背景知识: (1)tf-idf 按照词TF-IDF值来衡量该词在该文档中的重要性的指导思想:如果某个词比较少见,但是它在这篇文章中多次出现,那么它很可能就反映了这篇文章的特性,正是我们所需要的关键词. tf–idf is the product of two statistics, term frequency and inverse document frequency. //Various ways for determining the exact values of both
项目中需要算2个字符串的相似度,是根据余弦相似性算的,下面具体介绍一下: 余弦相似度计算 余弦相似度用向量空间中两个向量夹角的余弦值作为衡量两个个体间差异的大小.余弦值越接近1,就表明夹角越接近0度,也就是两个向量越相似,这就叫"余弦相似性". 我们知道,对于两个向量,如果他们之间的夹角越小,那么我们认为这两个向量是越相似的.余弦相似性就是利用了这个理论思想.它通过计算两个向量的夹角的余弦值来衡量向量之间的相似度值.余弦相似性推导公式如下: public class Cosine {
在<机器学习---文本特征提取之词袋模型(Machine Learning Text Feature Extraction Bag of Words)>一文中,我们通过计算文本特征向量之间的欧氏距离,了解到各个文本之间的相似程度.当然,还有其他很多相似度度量方式,比如说余弦相似度. 在<皮尔逊相关系数与余弦相似度(Pearson Correlation Coefficient & Cosine Similarity)>一文中简要地介绍了余弦相似度.因此这里,我们比较一下欧氏
5.2自然语言处理 觉得有用的话,欢迎一起讨论相互学习~Follow Me 2.3词嵌入的特性 properties of word embedding Mikolov T, Yih W T, Zweig G. Linguistic regularities in continuous space word representations[J]. In HLT-NAACL, 2013. 词嵌入可以用来解决类比推理问题(reasonable analogies) man 如果对应woman,此时左