import scipy from sklearn.datasets import load_digits from sklearn.metrics import classification_report from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from sklearn.model_selection import GridS
import scipy from sklearn.datasets import load_digits from sklearn.metrics import classification_report from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from sklearn.model_selection import GridS
写在前面: 上周微调一个文本检测模型seglink,将特征提取层进行冻结,只训练分类回归层,然而查看tensorboard发现里面有histogram显示模型各个参数分布,看了目前这个训练模型参数分布压根就看不懂,很想知道我的预训练模型的参数分布是怎么个情况,训练了一天了,模型的参数分布较预训练的模型参数有啥变化没有,怎么办呢? 利用tf.summary将模型参数分布在tensorboard可视化: 导入需要的库 设置模型文件夹路径 import TensorFlow as tf from t