首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
google梯度下降算法网站
2024-10-22
谷歌机器学习速成课程---降低损失 (Reducing Loss):随机梯度下降法
在梯度下降法中,批量指的是用于在单次迭代中计算梯度的样本总数.到目前为止,我们一直假定批量是指整个数据集.就 Google 的规模而言,数据集通常包含数十亿甚至数千亿个样本.此外,Google 数据集通常包含海量特征.因此,一个批量可能相当巨大.如果是超大批量,则单次迭代就可能要花费很长时间进行计算. 包含随机抽样样本的大型数据集可能包含冗余数据.实际上,批量大小越大,出现冗余的可能性就越高.一些冗余可能有助于消除杂乱的梯度,但超大批量所具备的预测价值往往并不比大型批量高. 如果我们可以通过更少
AI-Tensorflow-神经网络优化算法-梯度下降算法-学习率
记录内容来自<Tensorflow实战Google一书>及MOOC人工智能实践 http://www.icourse163.org/learn/PKU-1002536002?tid=1002700003 --梯度下降算法主要用于优化单个参数的取值, 反向传播算法给出了一个高效的方式在所有参数上使用梯度下降算法. 从而神经网络模型在训练数据的孙师函数尽可能小. --反向传播算法是训练神经网络的核心算法, 它可以跟据定义好的损失函数优化神经网络中参数的取值, 从而使神经网络模型在训练数据集上的损失
25条来自 Google 的移动网站设计准则
越来越的用于通过移动设备访问网络,因此对于企业来说,现在比以往任何时候都更需要一个移动网站.但是,怎么样才能制作一个优秀的移动网站呢? 为了回答这个问题,Google 与 AnswerLab 合作,研究如何一系列用户如何与不同类型的手机网站互动.谷歌建立了移动网站设计的25个原则,以帮助企业构建用户体验优秀的移动网站. 您可能感兴趣的相关文章 太赞了!超炫的页面切换动画效果[附源码下载] 真是好东西!13种非常动感的页面加载动画效果 你见过吗?9款超炫的复选框(Checkbox)效果 超赞!基于
Google Developers中国网站
正于北京举办的谷歌开发者大会上,谷歌宣布,Google Developers中国网站 (developers.google.cn) 正式发布! 谷歌表示,Google Developers中国网站是特别为中国开发者而建立的,它汇集了Google为全球开发者所提供的开发技术资源,包括API文档.开发案例.技术培训的视频.并涵盖了以下关键开发技术和平台产品的信息: 1.Android: developer.android.google.cn Android开发者官方网站面向应用开发者提供了Andro
Google Developers中国网站发布!(转)
Google Developers 中国网站是特别为中国开发者而建立的,它汇集了 Google 为全球开发者所提供的开发技术资源,包括 API 文档.开发案例.技术培训的视频.并涵盖了以下关键开发技术和平台产品的信息: 1. Android: developer.android.google.cn Android 开发者官方网站面向应用开发者提供了 Android SDK 以及开发相关的各类文档.2. Web: developers.google.cn/web 学习如何利用 Progress
梯度下降算法的一点认识(Ng第一课)
昨天开始看Ng教授的机器学习课,发现果然是不错的课程,一口气看到第二课. 第一课 没有什么新知识,就是机器学习的概况吧. 第二课 出现了一些听不太懂的概念.其实这堂课主要就讲了一个算法,梯度下降算法.到了教授推导公式的时候感觉有点蒙,不过后来仔细想想,也大概理解了,这个算法并没有想象的晦涩.在这堂课中,梯度下降算法是为了解决线性回归问题的.视频中的例子是给你一堆训练数据,(房子面积和对应房价),如果此时给你一个没有出现过的房子面积数据,您能否给出正确的房价?解决思路是首先要看出来房子面积跟房价之
ng机器学习视频笔记(二) ——梯度下降算法解释以及求解θ
ng机器学习视频笔记(二) --梯度下降算法解释以及求解θ (转载请附上本文链接--linhxx) 一.解释梯度算法 梯度算法公式以及简化的代价函数图,如上图所示. 1)偏导数 由上图可知,在a点,其偏导数小于0,故θ减去小于0的数,相当于加上一个数.另外,从图上可以看出,在a点不是最佳点,需要继续向右移动,即a需要增加.因此符合要求. 对于在b点,可以同理得到需要减少的结果. 2)学习速率α α表示点移动向最小值点的速率,α取值需要注意. 当值太大,每次移动的距离太长,可能导致在最小值点附
监督学习:随机梯度下降算法(sgd)和批梯度下降算法(bgd)
线性回归 首先要明白什么是回归.回归的目的是通过几个已知数据来预测另一个数值型数据的目标值. 假设特征和结果满足线性关系,即满足一个计算公式h(x),这个公式的自变量就是已知的数据x,函数值h(x)就是要预测的目标值.这一计算公式称为回归方程,得到这个方程的过程就称为回归. 假设房子的房屋面积和卧室数量为自变量x,用x1表示房屋面积,x2表示卧室数量:房屋的交易价格为因变量y,我们用h(x)来表示y.假设房屋面积.卧室数量与房屋的交易价格是线性关系. 他们满足公式 上述公式中的θ为参数,也称为权
[机器学习Lesson3] 梯度下降算法
1. Gradient Descent(梯度下降) 梯度下降算法是很常用的算法,可以将代价函数J最小化.它不仅被用在线性回归上,也被广泛应用于机器学习领域中的众多领域. 1.1 线性回归问题应用 我们有一个函数J(θ0,θ1),要使其最小化minJ(θ0,θ01): Outline 对θ0,θ1开始进行一些猜测 通常将初θ0,θ1初始化为0 在梯度算法中,要做的就是不停的一点点改变θ0和θ1试图通过这种改变使得J(θ0,θ1)变小,直到找到J的最小值或者局部最小值. 1.2 梯度算法工作原理 现
Spark MLib:梯度下降算法实现
声明:本文参考< 大数据:Spark mlib(三) GradientDescent梯度下降算法之Spark实现> 1. 什么是梯度下降? 梯度下降法(英语:Gradient descent)是一个一阶最优化算法,通常也称为最速下降法. 要使用梯度下降法找到一个函数的局部极小值,必须向函数上当前点对应梯度(或者是近似梯度)的反方向的规定步长距离点进行迭代搜索. 先来看两个函数: 1. 拟合函数:为参数向量,h(θ)就是通过参数向量计算的值,n为参数的总个数,j代表的是一条记录里的一个参数
AI-2.梯度下降算法
上节定义了神经网络中几个重要的常见的函数,最后提到的损失函数的目的就是求得一组合适的w.b 先看下损失函数的曲线图,如下 即目的就是求得最低点对应的一组w.b,而本节要讲的梯度下降算法就是会一步一步地更新w和b 通过公式w’ = w – r * dw 改变w的值 梯度下降算法就是重复的执行上面的公式来不停的更新w的值,新的w的值(w’)等于旧的w减去学习率r与偏导数dw的乘积.r表示学习步进/学习率(learning rate),假设w是10,又假设dw为1,r为4时,那么在第一次梯度下降后,w
Logistic回归Cost函数和J(θ)的推导(二)----梯度下降算法求解最小值
前言 在上一篇随笔里,我们讲了Logistic回归cost函数的推导过程.接下来的算法求解使用如下的cost函数形式: 简单回顾一下几个变量的含义: 表1 cost函数解释 x(i) 每个样本数据点在某一个特征上的值,即特征向量x的某个值 y(i) 每个样本数据的所属类别标签 m 样本数据点的个数 hθ(x) 样本数据的概率密度函数,即某个数据属于1类(二分类问题)的概率 J(θ) 代价函数,估计样本属于某类的风险程度,越小代表越有可能属于这类 我们的目标是求出θ,使得这个代价函数J(θ)的值最
梯度下降算法对比(批量下降/随机下降/mini-batch)
大规模机器学习: 线性回归的梯度下降算法:Batch gradient descent(每次更新使用全部的训练样本) 批量梯度下降算法(Batch gradient descent): 每计算一次梯度会遍历全部的训练样本,如果训练样本的比较多时,内存消耗过大. 随机梯度下降算法: 1. 首先将随机打乱的训练样本数据 2. 外循环:(一般2—10次即可,若内循环中次数100000以上,则一次即可) 内循环:遍历所有的训练样本,每次梯度下降时使用一个样本计算梯度. 与批量梯度像算法相比,其下降曲线不
tensorflow随机梯度下降算法使用滑动平均模型
在采用随机梯度下降算法训练神经网络时,使用滑动平均模型可以提高最终模型在测试集数据上的表现.在Tensflow中提供了tf.train.ExponentialMovingAverage来实现滑动平均模型.在初始化ExponentialMovingAverage时,需要提供一个衰减率(decay).这个衰减率将用于控制模型更新的速度.ExponentialMovingAverage对每一个变量会维护一个影子变量(shadowvariable),这个影子变量的初始值就是相应变量的初始值,而每次运行变
深度学习课程笔记(四)Gradient Descent 梯度下降算法
深度学习课程笔记(四)Gradient Descent 梯度下降算法 2017.10.06 材料来自:http://speech.ee.ntu.edu.tw/~tlkagk/courses_MLDS17.html 我们知道在神经网络中,我们需要求解的是一个最小化的问题,即:最小化 loss function. 假设我们给定一组初始的参数 $\theta$,那么我们可以算出在当前参数下,这个loss是多少,即表示了这个参数到底有多不好. 然后我们利用上述式子来调整参数,其中梯度可以用▽的形式
p1 批梯度下降算法
(蓝色字体:批注:绿色背景:需要注意的地方:橙色背景是问题) 一,机器学习分类 二,梯度下降算法:2.1模型 2.2代价函数 2.3 梯度下降算法 一,机器学习分类 无监督学习和监督学习 无监督学习主要有聚类算法(例题:鸡尾酒会算法)根据数据中的变量关系来将数据进行分类 其中分类算法,可以根据一个特征来分类,多个特征分类更加准确 二,多元回归问题 2.1 模型定义: m代表训练集中实例的数量 x 代表特征或者输入变量 (x是一个向量,可以有很多特征) y 代表目标变量/输出变量(y也
使用Tensoflow实现梯度下降算法的一次线性拟合
# Author Qian Chenglong import tensorflow as tf import numpy as np #生成100个随机数据点 x_date=np.random.rand(100) y_date=x_date*0.1+0.2 #构造一个线性模型 k=tf.Variable(0.) b=tf.Variable(0.) y=k*x_date+b # 二次代价函数 loss=tf.reduce_mean(tf.square(y-y_date))#最小二乘 my_opti
梯度下降算法(Gradient Descent)
近期在搞论文,须要用梯度下降算法求解,所以又一次整理分享在这里. 主要包含梯度介绍.公式求导.学习速率选择.代码实现. 梯度下降的性质: 1.求得的解和选取的初始点有关 2.能够保证找到局部最优解,由于梯度终于会减小为0,则步长与梯度的乘积会自己主动越来越小. 梯度简单介绍 一个多元函数的在某点的梯度方向是函数值在该点增长最快的方向.即方向导数取最大值的方向. 问题描写叙述公式求导学习率选择 如果要学习这么一个函数: 那么损失函数能够定义成: 当中X矩阵,每行表示一个数据点,theta是列向量.
监督学习——随机梯度下降算法(sgd)和批梯度下降算法(bgd)
线性回归 首先要明白什么是回归.回归的目的是通过几个已知数据来预测另一个数值型数据的目标值. 假设特征和结果满足线性关系,即满足一个计算公式h(x),这个公式的自变量就是已知的数据x,函数值h(x)就是要预测的目标值.这一计算公式称为回归方程,得到这个方程的过程就称为回归. 假设房子的房屋面积和卧室数量为自变量x,用x1表示房屋面积,x2表示卧室数量:房屋的交易价格为因变量y,我们用h(x)来表示y.假设房屋面积.卧室数量与房屋的交易价格是线性关系. 他们满足公式 上述公式中的θ为参数,也称为权
【转】梯度下降算法以及其Python实现
一.梯度下降算法理论知识 我们给出一组房子面积,卧室数目以及对应房价数据,如何从数据中找到房价y与面积x1和卧室数目x2的关系? 为了实现监督学习,我们选择采用自变量x1.x2的线性函数来评估因变量y值,得到: 这里,sita1.sita2代表自变量x1.x2的权重(weights),sita0代表偏移量.为了方便,我们将评估值写作h(x),令x0=1,则h(x)可以写作: 其中n为输入样本数的数量.为了得到weights的值,我们需要令我们目前的样本数据评估出的h(x)尽可能的接近
Google Developers 中国网站正式发布
Google Developers 中国网站 (developers.google.cn) 正式发布!Google Developers 中国网站是特别为中国开发者而建立的,它汇集了 Google 为全球开发者所提供的开发技术资源,包括 API 文档.开发案例.技术培训的视频.并涵盖了以下关键开发技术和平台产品的信息: 1. Android: developer.android.google.cn Android 开发者官方网站面向应用开发者提供了 Android SDK 以及开发相关的各类文档
热门专题
ufun获取当前视图的特征
国内jquerycdn
windows批量删除文件命令
.net vue axios 出现两次请求
delphi .data段
js如何将树状转成线性
java一元操作符有哪些
button 点击效果
搭建uvm验证平台 linux
mysql 动态查询
scipy最小二乘法
protobuf import 编译错误
oracle 查询clob字段转换
go 访问二级json key
数据库报28000管理员账号密码不记得了
shell终端 wait
NPOI写入日期后不对
windows 显示arr
springboot设置启动界面
apt-get debian阿里源 sed