catalogue . 引言 . LSTM NETWORKS . LSTM 的变体 . GRUs (Gated Recurrent Units) . IMPLEMENTATION GRUs 0. 引言 In this post we’ll learn about LSTM (Long Short Term Memory) networks and GRUs (Gated Recurrent Units). LSTMs were first proposed in 1997 by Sepp Ho
转载 - Recurrent Neural Network Tutorial, Part 4 – Implementing a GRU/LSTM RNN with Python and Theano The code for this post is on Github. This is part 4, the last part of the Recurrent Neural Network Tutorial. The previous parts are: Recurrent Neural
Word Embedding Word Embedding是一种词的向量表示,比如,对于这样的"A B A C B F G"的一个序列,也许我们最后能得到:A对应的向量为[0.1 0.6 -0.5],B对应的向量为[-0.2 0.9 0.7]. 之所以希望把每个单词变成一个向量,目的还是为了方便计算,比如"求单词A的同义词",就可以通过"求与单词A在cos距离下最相似的向量"来做到. 那么如何进行词嵌入呢?目前主要有三种算法: Embedding