pog loves szh II Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Total Submission(s): 2106 Accepted Submission(s): 606 Problem Description Pog and Szh are playing games.There is a sequence with n numbers, Pog wi
# 2.1处理缺失值,连续值用均值填充 continuous_fillna_number = [] for i in train_null_ix: if(i in continuous_ix): mean_v = df_train[i].mean() continuous_fillna_number.append(mean_v) df_train[i] = df_train[i].fillna(mean_v) np.save("continuous_fillna_number.npy"
1. 引言 word embedding技术如word2vec,glove等已经广泛应用于NLP,极大地推动了NLP的发展.既然词可以embedding,句子也应该可以(其实,万物皆可embedding,Embedding is All You Need ^_^).近年来(2014-2018),许多研究者在研究如何进行句子表示学习,从而获得质量较高的句子向量(sentence embedding).事实上,sentence embedding在信息检索,句子匹配,句子分类等任务上均有广泛应用,并
我最近在学使用Pytorch写GAN代码,发现有些代码在训练部分细节有略微不同,其中有的人用到了detach()函数截断梯度流,有的人没用detch(),取而代之的是在损失函数在反向传播过程中将backward(retain_graph=True),本文通过两个 gan 的代码,介绍它们的作用,并分析,不同的更新策略对程序效率的影响. 这两个 GAN 的实现中,有两种不同的训练策略: 先训练判别器(discriminator),再训练生成器(generator),这是原始论文Generative