Request received to kill task 'attempt_201411191723_2827635_r_000009_0' by user ------- Task has been KILLED_UNCLEAN by the user 原因如下: 1.An impatient user (armed with "mapred job -kill-task" command) 2.JobTracker (to kill a speculative duplicate
Caused by: java.net.ConnectException: Connection refused (Connection refused) at java.net.PlainSocketImpl.socketConnect(Native Method) at java.net.AbstractPlainSocketImpl.doConnect(AbstractPlainSocketImpl.java:350) at java.net.AbstractPlainSocketImpl
org.apache.thrift.transport.TTransportException: Could not create ServerSocket on address 0.0.0.0/0.0.0.0:9083. at org.apache.thrift.transport.TServerSocket.<init>(TServerSocket.java:109) at org.apache.thrift.transport.TServerSocket.<init>(TSe
转自:http://www.iteblog.com/archives/831 如果你想查询某个表的某一列,Hive默认是会启用MapReduce Job来完成这个任务,如下: hive> SELECT ; Total MapReduce jobs = Launching Job out of Number of reduce tasks is set to since there's no reduce operator Cannot run job locally: Input Size (=
如果查询表的某一列,Hive中默认会启用MapReduce job来完成这个任务,如下: hive>select id,name from m limit 10;--执行时hive会启用MapReduce job 我们都知道,启用MapReduce Job是会消耗系统开销的.对于这个问题,从Hive0.10.0版本开始,对于简单的不需要聚合的类似 SELECT <col> from <table> LIMIT n语句,不需要起MapReduce job,直接通过Fetch t
启用MapReduce Job是会消耗系统开销的.对于这个问题,从Hive0.10.0版本开始,对于简单的不需要聚合的类似SELECT <col> from <table> LIMIT n语句,不需要起MapReduce job,直接通过Fetch task获取数据 set hive.fetch.task.conversion=more; select * from info_table where dt='2017-04-26' limit ;
Hive中将文件加载到数据库表失败解决办法(hive创建表失败) 遇到的问题: FAILED: Execution Error, return code 1 from org.apache.hadoop.hive.ql.exec.DDLTask. MetaException(message:Got exception: java.net.ConnectException Call From dblab-VirtualBox/127.0.1.1 to localhost:9000 failed o
Hive默认使用的计算框架是MapReduce,在我们使用Hive的时候通过写SQL语句,Hive会自动将SQL语句转化成MapReduce作业去执行,但是MapReduce的执行速度远差与Spark.通过搭建一个Hive On Spark可以修改Hive底层的计算引擎,将MapReduce替换成Spark,从而大幅度提升计算速度.接下来就如何搭建Hive On Spark展开描述. 注:本人使用的是CDH5.9.1,使用的Spark版本是1.6.0,使用的集群配置为4个节点,每台内存32+G,