hive的多表连接,都会转换成多个MR job,每一个MR job在hive中均称为Join阶段.按照join程序最后一个表应该尽量是大表,因为join前一阶段生成的数据会存在于Reducer 的buffer中,通过stream最后面的表,直接从Reducer中读取已经缓冲的中间数据结果,与后面的大表进行连接时,只需要从buffer中读取缓存的key,与大表中的指定key进行连接,速度更快,也避免内存缓冲区溢出. SELECT a.val, b.val, c.val FROM a JOIN b
HIVE Map Join is nothing but the extended version of Hash Join of SQL Server - just extending Hash Join into Distributed System. SMB(Sort Merge Bucket) Join is also similar to the SQL Server Merge Join mechnism - just extending it into Distributed S
Hive 的 JOIN 用法 hive只支持等连接,外连接,左半连接.hive不支持非相等的join条件(通过其他方式实现,如left outer join),因为它很难在map/reduce中实现这样的条件.而且,hive可以join两个以上的表. 1.等连接 只有等连接才允许 hive> SELECT a.* FROM a JOIN b ON (a.id = b.id); hive> SELECT a.* FROM a JOIN b ON (a.id = b.id AND a.depart
left join和union结合的用法子查询union 然后加个括号设置个别名 (union自动去除 重复的 ) <pre>select o.nickName,o.sex,o.province,o.city,from_unixtime(m.time,'%Y-%m-%d %H:%i:%s') as starttime,from_unixtime(z.time,'%Y-%m-%d %H:%i:%s') as endtime,ROUND((z.time-m.time)/60) as haoshif
1 SELECT Persons.LastName, Persons.FirstName, Orders.OrderNo FROM Persons, Orders WHERE Persons.Id_P = Orders.Id_P 等同于 1 SELECT Persons.LastName, Persons.FirstName, Orders.OrderNo FROM Persons INNER JOIN Orders ON Persons.Id_P = Orders.Id_P ORDER BY