select @From, @To, EffectiveDate, GETDATE(), Rate from Config_Currency_ExchangeRate_Temp where EffectiveDate not in ( select EffectiveDate from Config_Currency_ExchangeRate where EffectiveDate >=@BeginTime and EffectiveDate <=@EndTime and CIDFrom =
HIVE Map Join is nothing but the extended version of Hash Join of SQL Server - just extending Hash Join into Distributed System. SMB(Sort Merge Bucket) Join is also similar to the SQL Server Merge Join mechnism - just extending it into Distributed S
hive的多表连接,都会转换成多个MR job,每一个MR job在hive中均称为Join阶段.按照join程序最后一个表应该尽量是大表,因为join前一阶段生成的数据会存在于Reducer 的buffer中,通过stream最后面的表,直接从Reducer中读取已经缓冲的中间数据结果,与后面的大表进行连接时,只需要从buffer中读取缓存的key,与大表中的指定key进行连接,速度更快,也避免内存缓冲区溢出. SELECT a.val, b.val, c.val FROM a JOIN b
Hive 的 JOIN 用法 hive只支持等连接,外连接,左半连接.hive不支持非相等的join条件(通过其他方式实现,如left outer join),因为它很难在map/reduce中实现这样的条件.而且,hive可以join两个以上的表. 1.等连接 只有等连接才允许 hive> SELECT a.* FROM a JOIN b ON (a.id = b.id); hive> SELECT a.* FROM a JOIN b ON (a.id = b.id AND a.depart
Join Optimization Join Optimization Improvements to the Hive Optimizer Star Join Optimization Star Schema Example Prior Support for MAPJOIN Limitations of Prior Implementation Enhancements for Star Joins Optimize Chains of Map Joins Current and Futur
第一:在map端产生join mapJoin的主要意思就是,当链接的两个表是一个比较小的表和一个特别大的表的时候,我们把比较小的table直接放到内存中去,然后再对比较大的表格进行map操作.join就发生在map操作的时候,每当扫描一个大的table中的数据,就要去去查看小表的数据,哪条与之相符,继而进行连接.这里的join并不会涉及reduce操作.map端join的优势就是在于没有shuffle,真好.在实际的应用中,我们这样设置: set hive.auto.conve
Select a.val,b.val From a [Left|Right|Full Outer] Join b On (a.key==b.key); 现有两张表:sales 列出了人名及其所购商品的 ID:things 列出商品的 ID 和名称: hive> select * from sales; OK Joe Hank Ali Eve Hank Time taken: row(s) hive> select * from things; OK Tie Coat Hat Scarf Tim