代码多来自<Introduction to Machine Learning with Python>. 该文集主要是自己的一个阅读笔记以及一些小思考,小总结. 前言 在开始进行模型训练之前,非常有必要了解准备的数据:数据的特征,数据和目标结果之间的关系是什么?而且这可能是机器学习过程中最重要的部分. 在开始使用机器学习实际应用时,有必要先回答下面几个问题: 解决的问题是什么?现在收集的数据能够解决目前的问题吗? 该问题可以转换成机器学习问题吗?如果可以,具体属于哪一类?监督 or 非监督 从
''' Created on 2017年5月21日 @author: weizhen ''' #Tensorflow的另外一个高层封装TFLearn(集成在tf.contrib.learn里)对训练Tensorflow模型进行了一些封装 #使其更便于使用. #使用TFLearn实现分类问题 #为了方便数据处理,本程序使用了sklearn工具包, #更多信息可以参考http://scikit-learn.org from sklearn import model_selection from sk
# coding=utf-8 import pandas as pd from sklearn.model_selection import train_test_split from sklearn import tree from sklearn.metrics import precision_recall_curve #准确率与召回率 import numpy as np #import graphviz import os os.environ["PATH"] += os.p
filename='g:\data\iris.csv' lines=fr.readlines()Mat=zeros((len(lines),4))irisLabels=[]index=0for line in lines: line=line.strip() if len(line)>0: listFromline=line.split(',') irisLabels.append(listFromline[-1]) Mat[index,:]=listFromline[0:4] index=in
注:数据是机器学习模型的原材料,当下机器学习的热潮离不开大数据的支撑.在机器学习领域,有大量的公开数据集可以使用,从几百个样本到几十万个样本的数据集都有.有些数据集被用来教学,有些被当做机器学习模型性能测试的标准(例如ImageNet图片数据集以及相关的图像分类比赛).这些高质量的公开数据集为我们学习和研究机器学习算法提供了极大的便利,类似于模式生物对于生物学实验的价值. Iris数据集概况 Iris Data Set(鸢尾属植物数据集)是我现在接触到的历史最悠久的数据集,它首次出现在著名的英国