首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
java有没有 reducebykey
2024-08-29
java实现spark常用算子之ReduceByKey
import org.apache.spark.SparkConf;import org.apache.spark.api.java.JavaPairRDD;import org.apache.spark.api.java.JavaSparkContext;import org.apache.spark.api.java.function.Function2;import org.apache.spark.api.java.function.VoidFunction;import scala.T
Spark案例分析
一.需求:计算网页访问量前三名 import org.apache.spark.rdd.RDD import org.apache.spark.{SparkConf, SparkContext} /** * 需求:计算网页访问量前三名 * 用户:喜欢视频 直播 * 帮助企业做经营和决策 * * 看数据 */ object UrlCount { def main(args: Array[String]): Unit = { //1.加载数据 val conf:SparkConf = new Spa
(九)groupByKey,reduceByKey,sortByKey算子-Java&Python版Spark
groupByKey,reduceByKey,sortByKey算子 视频教程: 1.优酷 2. YouTube 1.groupByKey groupByKey是对每个key进行合并操作,但只生成一个sequence,groupByKey本身不能自定义操作函数. java: package com.bean.spark.trans; import java.util.Arrays; import java.util.List; import org.apache.spark.SparkConf;
(四)Spark集群搭建-Java&Python版Spark
Spark集群搭建 视频教程 1.优酷 2.YouTube 安装scala环境 下载地址http://www.scala-lang.org/download/ 上传scala-2.10.5.tgz到master和slave机器的hadoop用户installer目录下 两台机器都要做 [hadoop@master installer]$ ls hadoop2 hadoop-2.6.0.tar.gz scala-2.10.5.tgz 解压 [hadoop@master installer]$
spark 快速入门 java API
Spark的核心就是RDD,对SPARK的使用入门也就是对RDD的使用,包括action和transformation 对于Java的开发者,单单看文档根本是没有办法理解每个API的作用的,所以每个SPARK的新手,最好按部就班直接学习scale, 那才是一个高手的必经之路,但是由于项目急需使用,没有闲工夫去学习一门语言,只能从JAVA入门的同学, 福利来了.... 对API的解释: 1.1 transform l map(func):对调用map的RDD数据集中的每个element都使用
Spark基础排序+二次排序(java+scala)
1.基础排序算法 sc.textFile()).reduceByKey(_+_,).map(pair=>(pair._2,pair._1)).sortByKey(false).map(pair=>(pair._2,pair._1)).collect //key value交换 sc.setLogLevel("WARN") 2.二次排序算法 所谓二次排序就是指排序的时候考虑两个维度(有可能10次排序) Java版本 package com.dt.java.spark; imp
Spark基础与Java Api介绍
原创文章,转载请注明: 转载自http://www.cnblogs.com/tovin/p/3832405.html 一.Spark简介 1.什么是Spark 发源于AMPLab实验室的分布式内存计算平台,它克服了MapReduce在迭代式计算和交互式计算方面的不足. 相比于MapReduce,Spark能充分利用内存资源提高计算效率. 2.Spark计算框架 Driver程序启动很多workers,然后workers在(分布式)文件系统中读取数据后转化为RDD(弹性分布式数据集),最后对RD
java操作spark1.2.0
虽然推荐的是scala,但是还是试一下 package org.admln.java7OperateSpark; import java.util.Arrays; import java.util.List; import java.util.regex.Pattern; import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaPairRDD; import org.apache.spark.api.java
Spark菜鸟学习营Day1 从Java到RDD编程
Spark菜鸟学习营Day1 从Java到RDD编程 菜鸟训练营主要的目标是帮助大家从零开始,初步掌握Spark程序的开发. Spark的编程模型是一步一步发展过来的,今天主要带大家走一下这段路,让我们从一段最最基础的Java代码开始. 问题:Java有哪些数据结构 大致有如下几种,其中List与Map是最重要的: List Map Set Array Heap Stack Queue Tree 练习:构造一个1-5的List,把他们打印出来 写法1 List<Integer> input =
使用Java编写并运行Spark应用程序
我们首先提出这样一个简单的需求: 现在要分析某网站的访问日志信息,统计来自不同IP的用户访问的次数,从而通过Geo信息来获得来访用户所在国家地区分布状况.这里我拿我网站的日志记录行示例,如下所示: 1 121.205.198.92 - - [21/Feb/2014:00:00:07 +0800] "GET /archives/417.html HTTP/1.1" 200 11465 "http://shiyanjun.cn/archives/417.html/" &
Spark:用Scala和Java实现WordCount
http://www.cnblogs.com/byrhuangqiang/p/4017725.html 为了在IDEA中编写scala,今天安装配置学习了IDEA集成开发环境.IDEA确实很优秀,学会之后,用起来很顺手.关于如何搭建scala和IDEA开发环境,请看文末的参考资料. 用Scala和Java实现WordCount,其中Java实现的JavaWordCount是spark自带的例子($SPARK_HOME/examples/src/main/java/org/apache/spark
Spark RDD/Core 编程 API入门系列 之rdd案例(map、filter、flatMap、groupByKey、reduceByKey、join、cogroupy等)(四)
声明: 大数据中,最重要的算子操作是:join !!! 典型的transformation和action val nums = sc.parallelize(1 to 10) //根据集合创建RDD map适用于 package com.zhouls.spark.cores import org.apache.spark.{SparkConf, SparkContext} /** * Created by Administrator on 2016/9/27. */object Transfo
spark 中的RDD编程 -以下基于Java api
1.RDD介绍: RDD,弹性分布式数据集,即分布式的元素集合.在spark中,对所有数据的操作不外乎是创建RDD.转化已有的RDD以及调用RDD操作进行求值.在这一切的背后,Spark会自动将RDD中的数据分发到集群中,并将操作并行化. Spark中的RDD就是一个不可变的分布式对象集合.每个RDD都被分为多个分区,这些分区运行在集群中的不同节点上.RDD可以包含Python,Java,Scala中任意类型的对象,甚至可以包含用户自定义的对象. 用户可以使用两种方法创建
java spark-streaming接收TCP/Kafka数据
本文将展示 1.如何使用spark-streaming接入TCP数据并进行过滤: 2.如何使用spark-streaming接入TCP数据并进行wordcount: 内容如下: 1.使用maven,先解决pom依赖 <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-streaming-kafka_2.10</artifactId> <version>1
Spark1.4从HDFS读取文件运行Java语言WordCounts
Hadoop:2.4.0 Spark:1.4.0 Ubuntu 14.0 1.首先启动Hadoop的HDFS系统. HADOOP_HOME/sbin/start-dfs.sh 2.在Linux中生成一个文件test.txt,保存在/home/testjars/目录下 3.通过hadoop fs -put命令上传 hadoop fs -put /home/testjars/test.txt 4.在文件系统中查看: 记住路径:hdfs://localhost:9000/u
Spark1.4从HDFS读取文件运行Java语言WordCounts并将结果保存至HDFS
本次实验相关信息如下: 操作系统:Ubuntu 14 Hadoop版本:2.4.0 Spark版本:1.4.0 运行前提是Hadoop与Spark均已正确安装配置 2.在Linux中生成一个文件test.txt,保存在/home/testjars/目录下 3.通过hadoop fs -put命令上传 hadoop fs -put /home/testjars/test.txt 4.在文件系统中查看: (Spark1.4 官方文档中的一段) 记住路径:hdfs://localhost:900
使用java开发spark的wordcount程序(多种实现)
package spark; import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaPairRDD; import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.JavaSparkContext; import org.apache.spark.sql.SparkSession; import scala.Tuple2
spark之java程序开发
spark之java程序开发 1.Spark中的Java开发的缘由: Spark自身是使用Scala程序开发的,Scala语言是同时具备函数式编程和指令式编程的一种混血语言,而Spark源码是基于Scala函数式编程来给予设计的,Spark官方推荐Spark的开发人员基于Scala的函数式编程来实现Spark的Job开发,但是目前Spark在生产上的主流开发语言仍然是Java,造成这一事实的原因主要有以下几点: A.Java目前已经成为行业内的主流语言,社区相当活跃,相比于Scala而言,Jav
基于Java+SparkStreaming整合kafka编程
一.下载依赖jar包 具体可以参考:SparkStreaming整合kafka编程 二.创建Java工程 太简单,略. 三.实际例子 spark的安装包里面有好多例子,具体路径:spark-2.1.1-bin-hadoop2.7\examples. JavaDirectKafkaWordCount.java package com.spark.test; import java.util.HashMap; import java.util.HashSet; import java.util.Ar
Hadoop概念学习系列之Java调用Shell命令和脚本,致力于hadoop/spark集群(三十六)
前言 说明的是,本博文,是在以下的博文基础上,立足于它们,致力于我的大数据领域! http://kongcodecenter.iteye.com/blog/1231177 http://blog.csdn.net/u010376788/article/details/51337312 http://blog.csdn.net/arkblue/article/details/7897396 第一种:普通做法 首先,编号写WordCount.scala程序. 然后,打成jar包,命名为WC.jar.
热门专题
zbrush笔刷详解
openlayers 需要学linux吗
vue 插值表达式 数值不变
ubuntu安装kernel-devel
python魔法方法就是构造函数吗
html怎么用js读取本地文件并显示文件内容
python selenium 属性有横杠就找不到
npm升级vue版本
java file 创建时间
js find寻找标签
爱斯维尔latex模板参考文献作者很多如何处理
html微信语音播放动画效果
latex写display delta
hisql 支持 windows
kali怎么配置dns地址
auto.js定时任务失灵
blender全部烘培导出
vmware manjaro传文件
sqlserver 修改字段类型为text
easyui-tree判断最后一级