首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
java 实现人工神经网络
2024-08-29
手把手教你使用Java实现一个神经网络
首先看一下运行效果: 下面是项目整体目录: 0.实现神经网络总览 神经网络由层.神经元.权重.激活函数和偏置组成.每层都有一个或者多个神经元,每一个神经元都和神经输入/输出连接,这些连接就是权重. 需要重点强调一下,一个神经网络可能有很多隐含层,也可能一个没有,因为每层的神经元数目也可能不同.然而,输入输出层的神经元个数分别等于神经输入/输出的个数. 我们为了实现,需要定义以下的类: Neuron: 定义人工神经元 NeuralLayer: 抽象类,定义一个神经元层. InputLayer: 定
开源的c语言人工神经网络计算库 FANN
这年头机器学习非常的火,神经网络算是机器学习算法中的比较重要的一种.这段时间我也花了些功夫,学了点皮毛,顺便做点学习笔记. 介绍人工神经网络的基本理论的教科书很多.我正在看的是蒋宗礼教授写的<人工神经网络导论>,之所以选这本书,主要是这本比较薄,太厚的书实在是啃不动.这本书写的也比较浅显,用来入门正合适. 看书的同时也在网上找了找人工神经网络的库代码.感觉 FANN 这个库还不错,就顺道学了学这个库的使用方法. FANN 是个开源的 C 语言实现的人工神经网络库,由于是标准 C 语言写成的,所
JAVA实现BP神经网络算法
工作中需要预测一个过程的时间,就想到了使用BP神经网络来进行预测. 简介 BP神经网络(Back Propagation Neural Network)是一种基于BP算法的人工神经网络,其使用BP算法进行权值与阈值的调整[78].在20世纪80年代,几位不同的学者分别开发出了用于训练多层感知机的反向传播算法,David Rumelhart和James McClelland提出的反向传播算法是最具影响力的.其包含BP的两大主要过程,即工作信号的正向传播与误差信号的反向传播,分别负责了神经网络中输出
neurosolutions 人工神经网络集成开发环境 keras
人工神经网络集成开发环境 : http://www.neurosolutions.com/ keras: https://github.com/fchollet/keras 文档 https://keras.io/ 中文: http://keras-cn.readthedocs.io/en/latest/ 深度学习资源: https://github.com/ChristosChristofidis/awesome-deep-learning
[DL学习笔记]从人工神经网络到卷积神经网络_2_卷积神经网络
先一层一层的说卷积神经网络是啥: 1:卷积层,特征提取 我们输入这样一幅图片(28*28): 如果用传统神经网络,下一层的每个神经元将连接到输入图片的每一个像素上去,但是在卷积神经网络中,我们只把输入图像的一部分连接到下一层的神经元上. 比如每个神经元连接对应的一个5*5的区域: 这个输入图像的区域被称为隐藏神经元的局部感受野(local receptive fields),它是输入像素上的一个小窗口.每个连接学习一个权重.而隐藏神经元同时也学习一个总的偏置.可以把特定的隐藏神经元看作是在学习分
[DL学习笔记]从人工神经网络到卷积神经网络_1_神经网络和BP算法
前言:这只是我的一个学习笔记,里边肯定有不少错误,还希望有大神能帮帮找找,由于是从小白的视角来看问题的,所以对于初学者或多或少会有点帮助吧. 1:人工全连接神经网络和BP算法 <1>:人工神经网络结构与人工神经网络可以完美分割任意数据的原理: 本节图片来源于斯坦福Andrew Ng老师coursea课件(此大神不多介绍,大家都懂) 在说明神经网络之前,先介绍一下神经网络的基础计算单元,感知器. 上图就是一个简单的感知器,蓝色是输入的样本,g(z)是激活函数,z=x1*w1+-,a=g(z) 这
C#中调用Matlab人工神经网络算法实现手写数字识别
手写数字识别实现 设计技术参数:通过由数字构成的图像,自动实现几个不同数字的识别,设计识别方法,有较高的识别率 关键字:二值化 投影 矩阵 目标定位 Matlab 手写数字图像识别简介: 手写阿拉伯数字识别是图像内容识别中较为简单的一个应用领域,原因有被识别的模式数较少(只有0到9,10个阿拉伯数字).阿拉伯数字笔画少并且简单等.手写阿拉伯数字的识别采用的方法相对于人脸识别.汉字识别等应用领域来说可以采用更为灵活的方法,例如基于规则的方法.基于有限状态自动机的方法.基于统计的方法和基于神
机器学习笔记之人工神经网络(ANN)
人工神经网络(ANN)提供了一种普遍而且实际的方法从样例中学习值为实数.离散值或向量函数.人工神经网络由一系列简单的单元相互连接构成,其中每个单元有一定数量的实值输入,并产生单一的实值输出. 上面是一个汽车自动驾驶神经网络学习的例子:下方的图像是网络的输入,通过4个隐藏单元运算,得到30个输出(图的上方)决定汽车的行驶方向. 本文主要介绍两种基本单元:感知器和线性单元的权值学习. 感知器 (1)感知器原理 感知器是神经网络的一种基础单元.感知器以一个实数值作为输入,计算这些值得线性组合,如果大于
人工神经网络(Artificial Neural Networks)
人工神经网络的产生一定程度上受生物学的启发,因为生物的学习系统是由相互连接的神经元相互连接的神经元组成的复杂网络.而人工神经网络跟这个差不多,它是一系列简单的单元相互密集连接而成的.其中每个单元有一定数量的输入(可能是其他单元的输出),并产生单一的实数值输出(可能成为其他单元的输入). 常见的人工神经网络结果如下图: (1) 网络由三部分组成,输入层.隐藏层和输出层,往往隐藏层只有1层或2层: (2) 每层由若干个单元组成,所有单元分层互连形成一个无环的前馈网络: (3) 下一层的某个单元的输入
人工神经网络简介和单层网络实现AND运算--AForge.NET框架的使用(五)
原文:人工神经网络简介和单层网络实现AND运算--AForge.NET框架的使用(五) 前面4篇文章说的是模糊系统,它不同于传统的值逻辑,理论基础是模糊数学,所以有些朋友看着有点迷糊,如果有兴趣建议参考相关书籍,我推荐<模糊数学教程>,国防工业出版社,讲的很全,而且很便宜(我买成7元钱). 人工神经网络的简介 人工神经网络是一种应用类似于大脑神经突触联接的结构进行信息处理的数学模型.它是一种运算模型,由大量神经元和相互的连接组成,每个神经元代表一种特定的输出函数,称为激励函数(activati
[DL学习笔记]从人工神经网络到卷积神经网络_3_使用tensorflow搭建CNN来分类not_MNIST数据(有一些问题)
3:用tensorflow搭个神经网络出来 为什么用tensorflow呢,应为谷歌是亲爹啊,虽然有些人说caffe更适合图像啊mxnet效率更高等等,但爸爸就是爸爸,Android都能那么火,一个道理嘛.其实这些个框架一通百通,就是语法不一样了些.从tensorflow开始吧. 关于tf的安装详见另一篇博文,此处tensorflow的学习基本来自Udacity中google的深度学习课程. 1:tensorflow的计算图 在tensorflow中编写代码可以分成两个部分,首先是要定义一个计算
【机器学习】人工神经网络ANN
神经网络是从生物领域自然的鬼斧神工中学习智慧的一种应用.人工神经网络(ANN)的发展经历的了几次高潮低谷,如今,随着数据爆发.硬件计算能力暴增.深度学习算法的优化,我们迎来了又一次的ANN雄起时代,以深度学习为首的人工神经网络,又一次走入人们的视野. 感知机模型perception 不再处理离散情况,而是连续的数值,学习时权值在变化,从而记忆存储学到的知识 神经元输入:类似于线性回归z =w1x1+w2x2 +⋯ +wnxn= wT・x(linear threshold unit (LTU))
人工神经网络,支持任意数量隐藏层,多层隐藏层,python代码分享
http://www.cnblogs.com/bambipai/p/7922981.html------误差逆传播算法讲解 人工神经网络包含多种不同的神经网络,此处的代码建立的是多层感知器网络,代码以<集体智慧编程>第四章 "nn.py" 为原型和框架,可以指定隐藏网络的层数和每层的节点数,利用反向传播法修正权值,并连接数据库,保存每层每个节点的权值等信息.代码在算法方面并没有做出改进,结构上可能不是特别严谨和简洁,在算法.结构方面并不一定可取,只是为建立多层隐藏网络提供一
【莫烦Pytorch】【P1】人工神经网络VS. 生物神经网络
滴:转载引用请注明哦[握爪] https://www.cnblogs.com/zyrb/p/9700343.html 莫烦教程是一个免费的机器学习(不限于)的学习教程,幽默风俗的语言让我们这些刚刚起步的小白们感到Friendly~o(* ̄︶ ̄*)o.为了巩固自己的记忆,也小小の贡献于他人,将莫烦教程进行整理.难免于有错误恳请批评指正,也希望自己始终能愉悦的学习!PS:大多数为整理文本,少部分添加自己的理解. Artificial Neural Nets VS Neural Nets ? 二三十年
人工神经网络入门(4) —— AFORGE.NET简介
范例程序下载:http://files.cnblogs.com/gpcuster/ANN3.rar如果您有疑问,可以先参考 FAQ 如果您未找到满意的答案,可以在下面留言:) 0 目录人工神经网络入门(1) —— 单层人工神经网络应用示人工神经网络入门(2) —— 人工神经基本概念介绍人工神经网络入门(3) —— 多层人工神经网络应用示例人工神经网络入门(4) —— AForge.Net简介 1 介绍这篇文章中,我们将介绍一个用C#实现的框架AForge,利用这个框架,您可以方便地操作人工网络,
人工神经网络 Artificial Neural Network
2017-12-18 23:42:33 一.什么是深度学习 深度学习(deep neural network)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法. --Wiki 在人工智能领域,有一个方法叫机器学习.在机器学习这个方法里,有一类算法叫神经网络.神经网络如下图所示: 上图中每个圆圈都是一个神经元,每条线表示神经元之间的连接.我们可以看到,上面的神经元被分成了多层,层与层之间的神经元有连接,而层内之间的神经元没有连
BP人工神经网络-反向传播法
0 网络计算结果 B(m)=f( ∑n( W(n,m)*X(n) ) + Θ(m) ) %中间层的输出 Y(k)=f( ∑m( V(m,k)*B(m) ) + ф(k) ) %输出层的输出 1 计算误差值 E(k)=Y'(k)-Y(K) %Y'表示样本真实的输出值 2 计算校正误差 dV(k)=E(K) * Y(k) * ( 1-Y(k) )* [学习率] dW(m)=∑k( dV(k) * V(m,k) ) * B(m) * ( 1-B(m) ) * [学习率] 3 误差校正 V(m,k)=V
微软“小冰”识狗与人工神经网络(I)
2014年8月21日,微软"小冰"网络机器人推出了一项图像识别技能:"小冰识狗". "小冰"怎么会"识狗"呢? 依据微软方面的说法,仅仅要"小冰"用户"将一张包括狗狗的照片发给"小冰".而且说出"小冰识狗"四个字(语音指令),"小冰"机器人会立马分辨出上传照片中狗狗的品种,瞬间回答用户发出的指语音令. 据称,识别的精确度达到83.8%.
ML三(人工神经网络)
人工神经网络 Artificial Neural Nerworks 基本术语概念: 人工神经网络(Artificial Neural Networks,ANN) 感知器(Perceptron):以一个实数值向量作为输入,计算输入的线性组合,如果结果大于某个阈值输出1,否则输出-1. 权值(weight):贡献率. 线性可分(linearly separable) Delta法则(delta rule):LMS的一个变态,采用梯度下降. 感知器训练法则(perceptron training ru
人工神经网络--ANN
神经网络是一门重要的机器学习技术.它是目前最为火热的研究方向--深度学习的基础.学习神经网络不仅可以让你掌握一门强大的机器学习方法,同时也可以更好地帮助你理解深度学习技术. 本文以一种简单的,循序的方式讲解神经网络.适合对神经网络了解不多的同学.本文对阅读没有一定的前提要求,但是懂一些机器学习基础会更好地帮助理解本文. 神经网络是一种模拟人脑的神经网络以期能够实现类人工智能的机器学习技术.人脑中的神经网络是一个非常复杂的组织.成人的大脑中估计有1000亿个神经元之多. 图1 人脑神经网络 那么机
python大战机器学习——人工神经网络
人工神经网络是有一系列简单的单元相互紧密联系构成的,每个单元有一定数量的实数输入和唯一的实数输出.神经网络的一个重要的用途就是接受和处理传感器产生的复杂的输入并进行自适应性的学习,是一种模式匹配算法,通常用于解决分类和回归问题. 常用的人工神经网络算法包括:感知机神经网络(Perceptron Neural Nerwork).反向传播网络(Back Propagation,BP).HopField网络.自组织映射网络(Self-Organizing Map,SOM).学习矢量量化网络(Learn
热门专题
java核心技术模拟记事本
/etc/sudoers 可被任何人写
docker login 强制http
WebSphere 查看日志
caret包怎么安装
strcpy在vs中用不了
判断表中是否存在某个字段,没有就新建该字段MySQL
activiti7 现有的vue表单
获取podman inspect 中的值
html dom元素 回车
QuerySelectField定义样式
delphi listview图片
miniui的消息窗口的内容无法换行
常用的mac破解软件网站
windows curl 上传文件
wndr 4300 石像鬼 刷回 官方
谷歌hack语法搜索
阿里巴巴图标库下载的没有.ttf文件怎么用
C语言 redis句柄多线程
网页重构 vue框架