ReLeQ:一种自动强化学习的神经网络深度量化方法 ReLeQ:一种自动强化学习的神经网络深度量化方法ReLeQ: An Automatic Reinforcement Learning Approach for Deep Quantization of Neural Networks 量化作为压缩的一种重要手段被广泛应用,而位宽和准确率的矛盾也始终存在.目前解决的方法有如CLIP-Q中的贝叶斯优化器,确定位宽.另一个问题是量化值的选取,在LQ-Net中采取了交替训练的方式. 如果将量化
本文是对Arthur Juliani在Medium平台发布的强化学习系列教程的个人中文翻译.(This article is my personal translation for the tutorial written and posted by Arthur Juliani on Medium.com.) 原文地址(URL for original article):https://medium.com/emergent-future/simple-reinforcement-learni