题目: 数组A中任意两个相邻元素大小相差1,现给定这样的数组A和目标整数t,找出t在数组A中的位置.如数组:[1,2,3,4,3,4,5,6,5],找到4在数组中的位置. 思路: 很明显,在数组中寻找某个数的复杂度为O(n),但在某些特殊数组中,可以通过寻找规律来减少比较次数. 上述数组的规律就是:相邻元素相差1,奇偶交替排列. 如果某个数A[i]等于要查找的数x,那么由于奇偶交替排列的关系,可以跳过下个数A[i+1],即i=i+2: 如果某个数A[i]不等于要查找的数x,那么由于相邻元素相差1