Job类 /** * Define the comparator that controls which keys are grouped together * for a single call to * {@link Reducer#reduce(Object, Iterable, * org.apache.hadoop.mapreduce.Reducer.Context)} * @param cls the raw
matadata: hadoop a spark a hive a hbase a tachyon a storm a redis a 自定义分组 import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.had
前言:在系统中向hbase中插入数据时,常常通过设置region的预分区来防止大数据量插入的热点问题,提高数据插入的效率,同时可以减少当数据猛增时由于Region split带来的资源消耗.大量的预分区数量会导致hbase客户端缓存大量的分区地址,导致内存的增长,某些系统中一个JVM进程中会开启几十个独立的hbase客户端对象,同时会查询多张Hbase表,这样JVM进程就会缓存 (预分区数 X 表数 X Hbase客户端数=条记录). 有没有这种情况?有的,在本人的storm项目中,采用结合sp
Hbas预分区 在系统中向hbase中插入数据时,常常通过设置region的预分区来防止大数据量插入的热点问题,提高数据插入的效率,同时可以减少当数据猛增时由于Region split带来的资源消耗.大量的预分区数量会导致hbase客户端缓存大量的分区地址,导致内存的增长,某些系统中一个JVM进程中会开启几十个独立的hbase客户端对象,同时会查询多张Hbase表,这样JVM进程就会缓存 (预分区数 X 表数 X Hbase客户端数=条记录). storm的自定义分组 有没有这种情况?有的,在本
本文发表于本人博客. 今天接着上次[Hadoop mapreduce自定义排序WritableComparable]文章写,按照顺序那么这次应该是讲解自定义分组如何实现,关于操作顺序在这里不多说了,需要了解的可以看看我在博客园的评论,现在开始. 首先我们查看下Job这个类,发现有setGroupingComparatorClass()这个方法,具体源码如下: /** * Define the comparator that controls which keys are grouped toge
public static void main(String[] args) { List<GroupDetailDTO> list = new ArrayList<>(); GroupDetailDTO dto1 = new GroupDetailDTO(); dto1.setHeadsetId(1); dto1.setTime("2020-01-03"); dto1.setActConcreteTime("a"); dto1.setPla
数据库中根据多个条件进行分组 ) from tableA group by a, b 现在不使用sql,而直接使用java编写分组,则通过Java8根据多个条件进行分组代码如下: List<User> list = Arrays.asList( new User("name1", "pwd1"), new User("name2", "pwd2"), new User("name1", &quo
分组集(Grouping Sets)是多个分组的并集,用于在一个查询中,按照不同的分组列对集合进行聚合运算,等价于对单个分组使用“union all”,计算多个结果集的并集.使用分组集的聚合查询,返回的select 子句相同,由于select子句只能引用分组列,因此,在单个分组中缺失的分组列,TSQL返回NULL值. TSQL使用 group by 子句分组,有4种不同的语法: group by a,b group by rollup(a,b) group by cube(a,b) group