首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
jieba库词频统计学习感想
2024-10-28
jieba库的使用与词频统计
1.词频统计 (1)词频分析是对文章中重要词汇出现的次数进行统计与分析,是文本 挖掘的重要手段.它是文献计量学中传统的和具有代表性的一种内容分析方法,基本原理是通过词出现频次多少的变化,来确定热点及其变化趋势. (2)安装jieba库 安装说明代码对 Python 2/3 均兼容 全自动安装:easy_install jieba 或者 pip install jieba / pip3 install jieba半自动安装:先下载 http://pypi.python.org/pypi/jieba
jieba库词频统计
一.jieba 库简介 (1) jieba 库的分词原理是利用一个中文词库,将待分词的内容与分词词库进行比对,通过图结构和动态规划方法找到最大概率的词组:除此之外,jieba 库还提供了增加自定义中文单词的功能. (2) jieba 库支持3种分词模式: 精确模式:将句子最精确地切开,适合文本分析. 全模式:将句子中所以可以成词的词语都扫描出来,速度非常快,但是不能消除歧义. 搜索引擎模式:在精确模式的基础上,对长分词再次切分,提高召回率,适合搜索引擎分词. 二.安装库函数 (1) 在命令行下输
jieba库词频统计练习
在sypder上运行jieba库的代码: import matplotlib.pyplot as pltfracs = [2,2,1,1,1]labels = 'houqin', 'jiemian', 'zhengjiehong','baogan','dadaima'explode = [ 0,0,0,0,0]plt.axes(aspect=1)plt.pie(x=fracs, labels=labels, explode=explode,autopct='%3.1f %%', shadow=T
python 利用jieba库词频统计
1 #统计<三国志>里人物的出现次数 2 3 import jieba 4 text = open('threekingdoms.txt','r',encoding='utf-8').read() 5 excludes = {'将军','却说','二人','不能','如此','荆州','不可','商议','如何','军士','左右','主公','引兵','次日','大喜','军马', 6 '天下','东吴','于是'} 7 #返回列表类型的分词结果 8 words = jieba.lcut(t
jieba库分词统计
代码在github网站,https://github.com/chaigee/chaigee,中的z3.py文件 py.txt为团队中文简介文件 代码运行后词频统计使用xlwt库将数据发送到excel表格,如图,频数为1的省略 在excel表格作柱形图如图所示 由此分析我们团队的简介用词得出:我们团队不仅注重团队合作,而且注重团队分工,发扬队员风格,提高队员对项目的兴趣,做擅长的工作,多次提到宣言以此提高团队凝聚力.
python jieba库的基本使用
第一步:先安装jieba库 输入命令:pip install jieba jieba库常用函数: jieba库分词的三种模式: 1.精准模式:把文本精准地分开,不存在冗余 2.全模式:把文中所有可能的词语都扫描出来,存在冗余 3.搜索引擎模式:在精准模式的基础上,再次对长词进行切分 精准模式: >>> import jieba >>> jieba.lcut("中国是一个伟大的国家") Building prefix dict from the def
用jieba库统计文本词频及云词图的生成
一.安装jieba库 :\>pip install jieba #或者 pip3 install jieba 二.jieba库解析 jieba库主要提供提供分词功能,可以辅助自定义分词词典. jieba库中包含的主要函数如下: jieba.cut(s) 精确模式,返回一个可迭代的数据类型 jieba.cut(s,cut_all=True)
py库: jieba (中文词频统计) 、collections (字频统计)、WordCloud (词云)
先来个最简单的: # 查找列表中出现次数最多的值 ls = [1, 2, 3, 4, 5, 6, 1, 2, 1, 2, 1, 1] ls = ["呵呵", "呵呵", "呵呵", "哈哈", "哈哈", "拉拉"] y = max(set(ls), key=ls.count) print(y) 一.字频统计: ( collections 库) 2017-10-27 这个库是python
利用python jieba库统计政府工作报告词频
1.安装jieba库 舍友帮装的,我也不会( ╯□╰ ) 2.上网寻找政府工作报告 3.参照课本三国演义词频统计代码编写 import jieba txt = open("D:\政府工作报告.txt","r",encoding='utf-8').read() words = jieba.lcut(txt) counts = {} for word in words: if len(word) == 1: continue else: counts[word] = c
Python之利用jieba库做词频统计且制作词云图
一.环境以及注意事项 1.windows10家庭版 python 3.7.1 2.需要使用到的库 wordcloud(词云),jieba(中文分词库),安装过程不展示 3.注意事项:由于wordcloud默认是英文不支持中文,所以需要一个特殊字体 simsum.tff.下载地址: https://s3-us-west-2.amazonaws.com/notion-static/b869cb0c7f4e4c909a069eaebbd2b7ad/simsun.ttf 请安装到C:\Windows\F
广师大学习笔记之文本统计(jieba库好玩的词云)
1.jieba库,介绍如下: (1) jieba 库的分词原理是利用一个中文词库,将待分词的内容与分词词库进行比对,通过图结构和动态规划方法找到最大概率的词组:除此之外,jieba 库还提供了增加自定义中文单词的功能. (2) jieba 库支持3种分词模式: 精确模式:将句子最精确地切开,适合文本分析. 全模式:将句子中所以可以成词的词语都扫描出来,速度非常快,但是不能消除歧义. 搜索引擎模式:在精确模式的基础上,对长分词再次切分,提高召回率,适合搜索引擎分词. 2.按安装jieba库 (1)
jieba库分词词频统计
代码已发至github上的python文件 词频统计结果如下(词频为1的词组数量已省略): {'是': 5, '风格': 4, '擅长': 4, '的': 4, '兴趣': 4, '宣言': 4, '有': 3, 'python': 3, '代码': 2, '员': 2, 'helloworld': 2, '哲学': 2, '当': 2, '对': 2, '很': 2, 'matlab': 2, '平凡': 2} 用词特点: 柱形图和饼图的创建通过代码实现图画中只显示频数2以上的词频重复的词频较
使用jieba库与wordcloud库第三方库进行词频统计
一.jieba库与wordcloud库的使用 1.jieba库与wordcloud库的介绍 jieba 库的分词原理是利用一个中文词库,将待分词的内容与分词词库进行比对,通过图结构和动态规划方法找到最大概率的词组:除此之外,jieba 库还提供了增加自定义中文单词的功能. wordcloud是优秀的词云展示第三方库,以词语为基本单位,通过图形可视化的方式,更加直观和艺术的展示文本. 2.安装jieba库与wordcloud库 在运行里输入 pip install wordcloud和pip in
jieba (中文词频统计) 、collections (字频统计)、WordCloud (词云)
py库: jieba (中文词频统计) .collections (字频统计).WordCloud (词云) 先来个最简单的: # 查找列表中出现次数最多的值 ls = [1, 2, 3, 4, 5, 6, 1, 2, 1, 2, 1, 1] ls = ["呵呵", "呵呵", "呵呵", "哈哈", "哈哈", "拉拉"] y = max(set(ls), key=ls.count)
jieba库与好玩的词云的学习与应用实现
经过了一些学习与一些十分有意义的锻(zhe)炼(mo),我决定尝试一手新接触的python第三方库 ——jieba库! 这是一个极其优秀且强大的第三方库,可以对一个文本文件的所有内容进行识别,分词,甚至是根据猜测的词义形成字典! 这么好用的库不去了解实在是可惜啊!!! 那么第一步,我们当然是先安装它了! 步骤很简单! 就是我们以往的cmd命令行安装即可: 接下来让我们了解一下它的基本语法吧! jieba库有三个基本的模式:精确模式.全模式.搜索引擎模式 精确模式:试图将语句最精确的切分,不存在冗
Python大数据:jieba 中文分词,词频统计
# -*- coding: UTF-8 -*- import sys import numpy as np import pandas as pd import jieba import jieba.analyse import codecs #设置pd的显示长度 pd.set_option('max_colwidth',500) #载入数据 rows=pd.read_csv('datas1.csv', header=0,encoding='utf-8',dtype=str) #载入停用词 ji
Hadoop基础学习(一)分析、编写并执行WordCount词频统计程序
版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/jiq408694711/article/details/34181439 前面已经在我的Ubuntu单机上面搭建好了伪分布模式的HBase环境,当中包含了Hadoop的执行环境. 详见我的这篇博文:http://blog.csdn.net/jiyiqinlovexx/article/details/29208703 我的目的主要是学习HBase,下一步打算学习的是将HBase作为Hadoop作业的
python实例:利用jieba库,分析统计金庸名著《倚天屠龙记》中人物名出现次数并排序
本实例主要用到python的jieba库 首先当然是安装pip install jieba 这里比较关键的是如下几个步骤: 加载文本,分析文本 txt=open("C:\\Users\\Beckham\\Desktop\\python\\倚天屠龙记.txt","r", encoding='utf-8').read() #打开倚天屠龙记文本 words=jieba.lcut(txt) #jieba库分析文本 对数据进行筛选和处理 for word in words:
python 学习jieba库遇到的问题及解决方法
昨天在课堂上学习了jieba库,跟着老师写了同样的代码时却遇到了问题: jieba分词报错AttributeError: module 'jieba' has no attribute 'cut' 文件名为jieba.py 代码是: import jieba s=jieba.lcut("中国是一个伟大的国家") print(s) 运行结果为 Traceback (most recent call last): File "F:\lgm\07孙晶晶\jieba.py"
【python】利用jieba中文分词进行词频统计
以下代码对鲁迅的<祝福>进行了词频统计: import io import jieba txt = io.open("zhufu.txt", "r", encoding='utf-8').read() words = jieba.lcut(txt) counts = {} for word in words: if len(word) == 1: continue else: counts[word] = counts.get(word,0) + 1 i
热门专题
信号量 线程同步Linux
oracle 11 exp空表 可以导出
mysql查询集群状态
Delphi2007做一个程序加载另一个程序到这个窗体里
mac配置jupyter notebook
libminiupnpc是什么应用
bootstrap流式布局居中
Windows 11安装Linux子系统gui
mysql select in 不删除重复数据
anaconda从C盘转移到D盘
perspective后 图片初始形态
jni C调用java函数返回字符串
KEIL下载HEX文件,缺少axf
求出最大排序上升子段长度
keepalived抢占模式,非抢占模式
mysql中的事物主要用于处理
pixel解bl锁开机界面
sql分离数据库时能不能中断
python str 转字典
西门子里驱动变频器必须用OB100块吗