首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
jordan标准型不变因子
2024-09-01
【线性代数】 06 - Jordan标准型
现在就来研究将空间分割为不变子空间的方法,最困难的是我们还不知道从哪里着手.你可能想到从循环子空间出发,一块一块地进行分割,但这个方案的存在性和唯一性都不能解决.不变子空间分割不仅要求每个子空间\(V'\)是不变的,还隐含要求\(V'\)之外元素的像不落在\(V'\)中,这一条就导致从局部开始分割的方案是行不通的.另外,这种方法也无法保障分割的唯一性,因为分割过程依赖每个子空间的选取. 1. 化零多项式 看来还是得从全局出发,期望找到某个属性,它能将空间完美分割.那么首先要将整个空间\(V\)放
Jordan 标准型的推论
将学习到什么 从 Jordan 标准型出发,能够获得非常有用的信息. Jordan 矩阵的构造 Jordan 矩阵 \begin{align} J=\begin{bmatrix} J_{n_1}(\lambda_1) & & \\ & \ddots & \\ && J_{n_k}(\lambda_k) \end{bmatrix} , \quad n_1+n_2+\cdots+n_k = n \end{align} 有确定的构造,这种构造使得与之相似的任何
Jordan 标准型定理
将学习到什么 就算两个矩阵有相同的特征多项式,它们也有可能不相似,那么如何判断两个矩阵是相似的?答案是它们有一样的 Jordan 标准型. Jordan 标准型定理 这节目的:证明每个复矩阵都与一个本质上唯一的 Jordan 矩阵相似. 分三步证明这个结论.其中前两步已经在其它章节中给出, 第一步 Schur 定理 确保每个复矩阵都相似于一个上三角矩阵,这个上三角矩阵的特征值出现在其对角线上,且相等的特征值放在一起. 第二步 Schur 三角化定理推论 中定理 1.3 确保第一步中所描述的那
Jordan 标准型的实例
将学习到什么 练习一下如何把一个矩阵化为 Jordan 标准型. 将矩阵化为 Jordan 标准型需要三步: 第一步 求出矩阵 \(A \in M_n\) 全部的特征值 \(\lambda_1,\cdots,\lambda_t\), 假设有 \(t\) 个不同的特征值 第二步 Jordan 标准型定理 中的推论告诉我们:\(w_k(A,\lambda)-w_{k+1}(A,\lambda)\) 是以 \(\lambda\) 为特征值且阶恰好为 \(k\) 的 Jordan 块的个数. 我们就
线性代数 | Jordan 标准型的笔记
内容概述: 把方阵 A 的特征多项式 \(c(λ)=|λE-A|\) 展开成 \(c(λ)=\sum_ia_i\lambda^i\) 的形式,然后使用神乎其技的证明,得到 \(c(A)=O\),特征多项式是 A 的化零多项式.[Hamilton-Cayley 定理] 定义 A 的最小多项式为 \(m(λ)=\Pi_i(λ-λ_i)^{c_i}\),即次数最低的.能使 m(A)=0 的多项式.显然,m(λ) 是 c(λ) 的因式. 如果 m(λ) 里所有 \(c_i\) 都为零,则 A 可相似对角
[转载] $\mathrm{Jordan}$标准型的介绍
本文转载自陈洪葛的博客$,$ 而实际上来自xida博客朝花夕拾$,$ 可惜该博客已经失效 $\mathrm{Jordan}$ 标准形定理是线性代数中的基本定理$,$ 专门为它写一篇长文好像有点多余$:$ 这方面的教材讲义实在是太多了$!$ 一个陈旧的定理还能写出什么新意来呢$?$理由有两个$.$ 第一个原因是我曾经在给学生讲这个定理的时候$,$ 突然发现不知道该怎么启发学生为好$.$ 虽然我知道 $\mathrm{Jordan}$ 标准形定理的很多种证法$,$ 照念几个不在话下$,$ 但是感觉有
[Bilingual] Different proofs of Jordan cardinal form (Jordan标准型的几种证明)
实 Jordan 标准型和实 Weyr 标准型
将学习到什么 本节讨论关于实矩阵的实形式的 Jordan 标准型,也讨论关于复矩阵的另外一种形式的 Jordan 标准型,因为它在与交换性有关的问题中很有用. 实 Jordan 标准型 假设 \(A \in M_n(\mathbb{R})\), 所以任何非实的特征值必定成对共轭出现,由于结任何 \(\lambda \in \mathbb{C}\), 以及所有 \(k=1,2,\cdots\) 我们有 \(\mathrm{rank} \, (A-\lambda I)^k= \mathrm{ra
Jordan 块的几何
设 $V$ 是复数域 $\mathbb{C}$ 上的 $n$ 维线性空间, $\varphi$ 是 $V$ 上的线性变换, $A\in M_n(\mathbb{C})$ 是 $\varphi$ 在某组基下的表示矩阵, 则有线性变换或矩阵的 Jordan 标准型理论. 具体的, 设 $\varphi$ 或 $A$ 的初等因子组为 $(\lambda-\lambda_1)^{r_1}$, $(\lambda-\lambda_2)^{r_2}$, $\cdots$, $(\lambda-\lambda
Jordan标准形
一.引入 前面已经指出,一切n阶矩阵A可以分成许多相似类.今要在与A相似的全体矩阵中,找出一个较简单的矩阵来作为相似类的标准形.当然以对角矩阵作为标准形最好,可惜不是每一个矩阵都能与对角矩阵相似.因此,急需引入一种较为简单而且对于一般矩阵都可由相似变换得到. 当矩阵A能相似于某对角矩阵时,该对角矩阵就是A的一个Jordan形.而当矩阵A不能相似于对角矩阵时,它必然与一个非对角的Jordan形相似.此时的Jordan形J与对角矩阵的差别也只是在主对角线元素的上邻位有某些元素为1.在这个意义上,Jo
复旦大学2015--2016学年第二学期(15级)高等代数II期末考试第六大题解答
六.(本题10分) 设 $n$ 阶复方阵 $A$ 的特征多项式为 $f(\lambda)$, 复系数多项式 $g(\lambda)$ 满足 $(f(g(\lambda)),g'(\lambda))=1$, 证明: 存在 $n$ 阶复方阵 $B$, 使得 $g(B)=A$. 证明 设 $P$ 为非异阵, 使得 $$P^{-1}AP=J=\mathrm{diag}\{J_{r_1}(\lambda_1),\cdots,J_{r_k}(\lambda_k)\}$$ 为 Jordan 标准型, 我们
复旦大学2015--2016学年第二学期高等代数II期末考试情况分析
一.期末考试成绩班级前几名 胡晓波(90).杨彦婷(88).宋卓卿(85).唐指朝(84).陈建兵(83).宋沛颖(82).王昊越(81).白睿(80).韩沅伯(80).王艺楷(80).张漠林(80).张子涵(80) 二.总成绩计算方法 平时成绩根据交作业的次数决定,本学期共交作业12次,10次以上(包括10次)100分,少一次扣10分. 总成绩=平时成绩*20%+期中考试成绩*20%+期末考试成绩*60% 三.最终成绩及人数 最终成绩 人数 A 26 A- 1 B+ 14 B 16 B- 20
复旦高等代数 II(15级)思考题
1.设 $f(x)=x^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0$ 是整系数首一多项式, 满足: $|a_0|$ 是素数且 $$|a_0|>1+\sum_{i=1}^{n-1}|a_i|,$$ 证明: $f(x)$ 是有理数域上的不可约多项式. 注 上述不可约多项式的判别法称为 Osada 定理. 2.(1) 设 $\varphi$ 是 $n$ 维线性空间 $V$ 上的线性变换, $V$ 有一个直和分解: $$V=V_1\oplus V_2\oplus\cdots\op
MATLAB命令大全
一.常用对象操作:除了一般windows窗口的常用功能键外.1.!dir 可以查看当前工作目录的文件. !dir& 可以在dos状态下查看.2.who 可以查看当前工作空间变量名, whos 可以查看变量名细节.3.功能键:功能键 快捷键 说明方向上键 Ctrl+P 返回前一行输入方向下键 Ctrl+N 返回下一行输入方向左键 Ctrl+B 光标向后移一个字符方向右键 Ctrl+F 光标向前移一个字符Ctrl+方向右键 Ctrl+R 光标向右移一个字符Ctrl+方向左键 Ctrl+L 光标向左移
[问题2014S08] 复旦高等代数II(13级)每周一题(第八教学周)
[问题2014S08] 设分块上三角阵 \[A=\begin{bmatrix} A_1 & B \\ 0 & A_2 \end{bmatrix},\] 其中 \(m\) 阶方阵 \(A_1\) 的 Jordan 标准型为 \(J_1\), \(n\) 阶方阵 \(A_2\) 的 Jordan 标准型为 \(J_2\), 并且 \(A_1,A_2\) 没有公共的特征值. 证明: 矩阵 \(A\) 的 Jordan 标准型就是 \[\begin{bmatrix} J_1 & 0 \\
[问题2014S08] 解答
[问题2014S08] 解答 (此解答由徐昊宸同学和鹿彭同学提供) 设 \(P_1(\lambda),P_2(\lambda),Q_1(\lambda),Q_2(\lambda)\) 为可逆 \(\lambda\)-矩阵, 使得 \[P_1(\lambda)(\lambda I_m-A_1)Q_1(\lambda)=\Lambda_1=\mathrm{diag}\{d_{11}(\lambda),d_{12}(\lambda),\cdots,d_{1m}(\lambda)\},\] \[P_2(
[问题2014S09] 复旦高等代数II(13级)每周一题(第九教学周)
[问题2014S09] 证明: \(n\) 阶方阵 \(A\) 与所有的 \(A^m\,(m\geq 1)\) 都相似的充分必要条件是 \(A\) 的 Jordan 标准型为 \[\mathrm{diag}\{ J_{r_1}(1),\cdots,J_{r_k}(1),0,\cdots,0 \}.\] 特别地, 非异阵 \(A\) 与所有的 \(A^m\,(m\geq 1)\) 都相似的充分必要条件是 \(A\) 的特征值全为 \(1\). 注 本题是复旦高代教材 P293 复习题 12 的
[问题2014S09] 解答
[问题2014S09] 解答 充分性: 先证明对 Jordan 块 \(J_r(1)\) 以及任意的正整数 \(m\), 均有 \(J_r(1)^m\) 相似于 \(J_r(1)\). 设 \(N=J_r(0)\), 则 \(J_r(1)=I+N\). 从而 \[J_r(1)^m=(I+N)^m=I+mN+\sum_{i=2}^mC_m^iN^i,\] 这是一个上三角阵, 主对角线上的元素全为 \(1\), 上次对角线上的元素全为 \(m\geq 1\). 因此 \(J_r(1)^m\) 的
[问题2014S10] 解答
[问题2014S10] 解答 先证明一个简单的引理. 引理 设 \(\lambda_0\) 是 \(n\) 阶方阵 \(A\) 的特征值, 则对任意的正整数 \(k\), Jordan 块 \(J_k(\lambda_0)\) 在 \(A\) 的 Jordan 标准型 \(J\) 中出现的个数为 \[\mathrm{rank}\big((A-\lambda_0I_n)^{k-1}\big)+\mathrm{rank}\big((A-\lambda_0I_n)^{k+1}\big)-2\,\m
[问题2014S14] 解答
[问题2014S14] 解答 首先, 满足条件的 \(\varphi\) 的全体特征值都为零. 事实上, 任取 \(\varphi\) 的特征值 \(\lambda\), 对应的特征向量为 \(0\neq\xi\in V\), 即 \(\varphi(\xi)=\lambda\xi\), 则由假设可得 \[0=(\varphi(\xi),\xi)=(\lambda\xi,\xi)=\lambda(\xi,\xi),\] 因为 \(\xi\neq 0\), 故 \((\xi,\xi)>0\),
热门专题
v2ray switchyomega配置吗
zabbix_server配置优化
sql 多字段 查询唯一
kmp算法next计算方法全网最详细
jpa 自定义字段查询
pcb布线中对滤波电容处理的要点
win7系统安装CitrixReceiver软件直接闪退问题
javafx 查找未响应的点
java 中的u t v
shell正则表达式提取字符串中的数字
sql中如何将查询的列名为空值的全部不显示
sql语句进一步查询
mysql关闭查询缓存
隐马尔可夫 维特比方法
ubuntu python3.5升级3.6
yum.conf修改完实时生效吗
迁移环境变量到新电脑
java 无缝刷新token
批量扫描接口生成代理对象
R语言 将枚举字符串转为数字