首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
k不动置换类 重要定理
2024-09-01
等价类计数问题(Polya定理和burnside引理)
零.约定: (置换等名词会在前置知识中有解释) \(1.\)在本文中,题目要求的染色方案等统称为"元素". \(2.\)两个元素严格相等我们记做"\(=\)",两个元素等价(按题目所给的置换可以互相得到)我们记做"\(\Leftrightarrow\)". \(3.\)元素\(a\)进行置换\(g\)我们记做\(a\otimes g\). \(4.\)置换之间的乘积记做\(\odot\),\(g_i=g_j\odot g_k\),当且仅当\(\f
置换及Pólya定理
听大佬们说了这么久Pólya定理,终于有时间把这个定理学习一下了. 置换(permutation)简单来说就是一个(全)排列,比如 \(1,2,3,4\) 的一个置换为 \(3,1,2,4\).一般地,我们记 \(i\) 到 \(a_i(1<=i<=n)\) 的一个置换为 \[ \left ( \begin{matrix} 1 & 2 & \cdots & n \\ a_1 & a_2 & \cdots & a_n \end{matrix} \r
UVA10294 Arif in Dhaka (First Love Part 2) —— 置换、poyla定理
题目链接:https://vjudge.net/problem/UVA-10294 题解: 白书P146~147. 为什么旋转i个间距,就有gcd(i,n)个循环,且每个循环有n/gcd(i,n)个元素? 证明: (gcd:最大公约数,lcm:最小公倍数) 将珠子从0到n-1标号,对于旋转i位的置换,在以0号为起点,长度为t的一个循环节中,元素标号为:0,i%n,(i*2)%n,…,(i*(t-1))%n 易知:(i*t)%n==0(循环大小为t,跳t次就回到初始点0),即 n*k == i*t
我对Burnside定理的理解
我想了想,发现可以证明burnside定理. 置换:n个元素1,2,-,n之间的一个置换表示1被1到n中的某个数a1取代,2被1到n中的某个数a2取代,直到n被1到n中的某个数an取代,且a1,a2,-,an互不相同. 置换群:置换群的元素是置换,运算是置换的连接.例如: 可以验证置换群满足群的四个条件. 重点是这个:│Ek│·│Zk│=│G│ k=1-n 这个我不会证明,但是很好理解:每个不动点都可以找到一个对应的置换,差不多就这个意思. 该公式的一个很重要的研究对象是群的元素个数,有很
burnside+polya 整理
先定义几个含义和符号:起始状态/方法/位置/元素/:以染色为例,起始状态是所有的染色方案,方法是以起始状态所有染色方案为基准转变为新的染色情景的操作(如旋转),位置则必须是没有任何染色效果的抽象空间,元素则是各种颜色循环: 在方法作用下,元素在位置上形成一个首尾相接的环(且定义这些位置是等价的)迹: 在方法作用下,循环所遍及到的所有位置的集合等价关系:一个置换集合G,如果一个置换方法能把其中一个方案映射到另一个方案,则二者是等价的等价类: 满足等价关系的方案属于同一等价类,如:这里有6个等价类
bzoj1004题解
[题意分析] 给N个元素染色,可以在定置换群的作用下互相转化的染色方案算相同的,问本质不同的染色方案数. [解题思路] 引理:Burnside定理 设集合S=[1,n]∩N,记等价类数为L,给定S上的置换群G. Zk (k不动置换类):若k是S中某个元素,G中使k保持不变的置换的全体,记以Zk,叫做G中使k保持不动的置换类,简称k不动置换类. C(π)(置换n的不动点全集):对于一个置换π∈G,及a∈X,若π(a)=a,则称a为π的不动点.π的不动点的全体记为C(π). 有定理:L=1/|G|*
「算法笔记」Polya 定理
一.前置概念 接下来的这些定义摘自 置换群 - OI Wiki. 1. 群 若集合 \(s\neq \varnothing\) 和 \(S\) 上的运算 \(\cdot\) 构成的代数结构 \((S,\cdot)\) 满足一下性质: 封闭性:\(\forall a,b\in S,a\cdot b\in S\). 结合律:\(\forall a,b,c\in S,(a\cdot b)\cdot c=a\cdot (b\cdot c)\). 单位元:\(\exists e\in S,\forall
[BZOJ1004] [HNOI2008]Cards解题报告(Burnside引理)
Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很快就给出了答案.进一步,小春要求染出Sr张红色,Sb张蓝色,Sg张绝色.他又询问有多少种方案,Sun想了一下,又给出了正确答案. 最后小春发明了M种不同的洗牌法,这里他又问Sun有多少种不同的染色方案.两种染色方法相同当且仅当其中一种可以通过任意的洗牌法(即可以使用多种洗牌法,而每种方法可以使用多次)洗成另一种.Sun发现这个问题有点难度,决
KMeans聚类 K值以及初始类簇中心点的选取 转
本文主要基于Anand Rajaraman和Jeffrey David Ullman合著,王斌翻译的<大数据-互联网大规模数据挖掘与分布式处理>一书. KMeans算法是最常用的聚类算法,主要思想是:在给定K值和K个初始类簇中心点的情况下,把每个点(亦即数据记录)分到离其最近的类簇中心点所代表的类簇中,所有点分配完毕之后,根据一个类簇内的所有点重新计算该类簇的中心点(取平均值),然后再迭代的进行分配点和更新类簇中心点的步骤,直至类簇中心点的变化很小,或者达到指定的迭代次数. KMeans算法本
Burnside引理与polay定理
#Burnside引理与polay定理 引入概念 1.置换 简单来说就是最元素进行重排列 是所有元素的异议映射,即\([1,n]\)映射到\([1,n]\) \[ \begin{pmatrix} 1&2&i \ldots n \\ a_{1} & a_{2}&a_{i} \ldots a_{n} \end{pmatrix}\] 比如,把正方体绕中心旋转90度,可以看做四个顶点的一个置换 (1)置换可以构成换:对于元素连一条有向边,连到置换中映射的元素,会构成n个环,(循环)
数学:Burnside引理与Pólya定理
这个计数定理在考虑对称的计数中非常有用 先给出这个定理的描述,虽然看不太懂: 在一个置换群G={a1,a2,a3……ak}中,把每个置换都写成不相交循环的乘积. 设C1(ak)是在置换ak的作用下不动点的个数,也就是长度为1的循环的个数.通过上述置换的变换操作后可以相等的元素属于同一个等价类 那么等价类的个数就等于: 然后理解一下公式 一正方形分成4格,2着色,有多少种方案?其中,经过转动相同的图象算同一方案. 关于转动,一共有四种置换方法,也就是|G|=4 不动(360度):a1=(1)(2)
Polya定理
http://www.cnblogs.com/wenruo/p/5304698.html 先看 Polya定理,Burnside引理回忆一下基础知识.总结的很棒. 一个置换就是集合到自身的一个双射,置换群就是元素为置换的群. 再看 Polya入门 涨涨姿势. Burnside定理,在每一种置换群也就是等价群中的数量和除以置换群的数量,即非等价的着色数等于在置换群中的置换作用下保持不变的着色平均数. Polya定理:设 是n个对象的一个置换群, 用m种颜色染图这n个对象,则不同的染色方案数为:
How Many Sets I(容斥定理)
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3556 How Many Sets I Time Limit: 2 Seconds Memory Limit: 65536 KB Give a set S, |S| = n, then how many ordered set group (S1, S2, ..., Sk) satisfies S1 ∩ S2 ∩ ... ∩ Sk = ∅. (Si is
BZOJ 1815: [Shoi2006]color 有色图(Polya定理)
题意 如果一张无向完全图(完全图就是任意两个不同的顶点之间有且仅有一条边相连)的每条边都被染成了一种颜色,我们就称这种图为有色图. 如果两张有色图有相同数量的顶点,而且经过某种顶点编号的重排,能够使得两张图对应的边的颜色是一样的,我们就称这两张有色图是同构的. 对于计算所有顶点数为 \(n\) ,颜色种类不超过 \(m\) 的图,最多有几张是两两不同构的图. 数据范围 \(n \le 53, 1 \le m \le 1000\) 题解 神仙题qwq 我们考虑对于点置换与其对应的边置换的关系: 对
【数论】【Polya定理】poj1286 Necklace of Beads
Polya定理:设G={π1,π2,π3........πn}是X={a1,a2,a3.......an}上一个置换群,用m中颜色对X中的元素进行涂色,那么不同的涂色方案数为:1/|G|*(mC(π1)+mC(π2)+mC(π3)+...+mC(πk)). 其中C(πk)为置换πk的循环节的个数. Polya定理的基础应用. 你得算出旋转和翻转时,每种置换的循环节数. 旋转时,每种置换的循环节数为gcd(n,i): 翻转时,若n为奇数,共有n个循环节数为n+1>>1的置换, 若n为偶数,共有n
等价类计数:Burnside引理 & Polya定理
提示: 本文并非严谨的数学分析,有很多地方是自己瞎口胡的,仅供参考.有错误请不吝指出 :p 1. 群 1.1 群的概念 群 \((S,\circ)\) 是一个元素集合 \(S\) 和一种二元运算 $ \circ $ 的合称,其满足以下性质. 封闭性 对于 \(\forall a,b \in S\) , \(\exist c \in S\) 使得 \(c = a \circ b\) 结合律 对于 \(\forall a,b,c \in S\) , \(a \circ (b \circ c) = (
.NET面试题系列[11] - IEnumerable<T>的派生类
“你每次都选择合适的数据结构了吗?” - Jeffery Zhao .NET面试题系列目录 ICollection<T>继承IEnumerable<T>.在其基础上,增加了Add,Remove等方法,可以修改集合的内容.IEnumerable<T>的直接继承者还有Stack<T>和Queue<T>. 所有标准的泛型集合都实现了ICollection<T>.主要的几个继承类有IList<T>,IDictionary<K
java.lang.String 类的所有方法
java.lang.String 类的所有方法 方法摘要 char charAt(int index) 返回指定索引处的 char 值. int codePointAt(int index) 返回指定索引处的字符(Unicode 代码点). int codePointBefore(int index) 返回指定索引之前的字符(Unicode 代码点). int codePointCount(int beginIndex, int endIndex) 返回此 String 的指定文本范围中的 Un
Bzoj 4403: 序列统计 Lucas定理,组合数学,数论
4403: 序列统计 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 328 Solved: 162[Submit][Status][Discuss] Description 给定三个正整数N.L和R,统计长度在1到N之间,元素大小都在L到R之间的单调不降序列的数量.输出答案对10^6+3取模的结果. Input 输入第一行包含一个整数T,表示数据组数.第2到第T+1行每行包含三个整数N.L和R,N.L和R的意义如题所述. Output 输出包含T
图论专题训练1-D(K步最短路,矩阵连乘)
题目链接 /* *题目大意: *求出从i到j,刚好经过k条边的最短路; * *矩阵乘法的应用之一(国家队论文): *矩阵乘法不满足交换律,矩阵乘法满足结合律; *给定一个有向图,问从A点恰好走k步(允许重复经过边)到达B点的方案数mod p的值; *把给定的图转为邻接矩阵,即A(i,j)=1当且仅当存在一条边i->j; *令C=A*A,那么C(i,j)=ΣA(i,k)*A(k,j),实际上就等于从点i到点j恰好经过2条边的路径数(枚举k为中转点); *类似地,C*A的第i行第j列就表示从i到j经
热门专题
WIN10说mfc42d.dll不符合
create-react-app打包以后太大
vue文件中 export 是什么
docker 如何配置nginx高可用
remotecallbacklist避免重复注册
www路jwth路com
TLS CLLBACK 反调试
unity IAsyncResult 下载
github下载的vue项目怎么运行
Linux下tcp连接断开后不释放的解决办法
java获取每个月的最后一天
小程序 style动态设置
sql空位连续座位买票
javaweb定义全局线程池
ansible动态主机清单
大数据调度工具Oozie
surfer在等高线上标记数字
jquery 绑定了点击事件 双击触发两次
tortoisegit怎么拉最新代码
git从gitlub下载项目