首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
kafka消息怎么知道之前消费到哪
2024-08-02
kafka查看消费数据
一.如何查看 在老版本中,使用kafka-run-class.sh 脚本进行查看.但是对于最新版本,kafka-run-class.sh 已经不能使用,必须使用另外一个脚本才行,它就是kafka-consumer-groups.sh 普通版 查看所有组 要想查询消费数据,必须要指定组.那么线上运行的kafka有哪些组呢?使用以下命令: bin/kafka-consumer- --list 注意:根据实际情况修改kafka的连接地址 执行输出: ... usercenter ... 这些组在是程序
实际业务处理 Kafka 消息丢失、重复消费和顺序消费的问题
关于 Kafka 消息丢失.重复消费和顺序消费的问题 消息丢失,消息重复消费,消息顺序消费等问题是我们使用 MQ 时不得不考虑的一个问题,下面我结合实际的业务来和你分享一下解决方案. 消息丢失问题 比如我们使用 Kakfa 时,以下场景都会发生消息丢失: producer -> broker (生产者生产消息) broker -> broker (集群环境,broker 同步给其他 broker) broker -> consumer (消费者消费消息) 解决方案也很简单,设置 acks
kafka消息的分发与消费
关于 Topic 和 Partition: Topic: 在 kafka 中,topic 是一个存储消息的逻辑概念,可以认为是一个消息集合.每条消息发送到 kafka 集群的消息都有一个类别.物理上来说,不同的 topic 的消息是分开存储的,每个 topic 可以有多个生产者向它发送消息,也可以有多个消费者去消费其中的消息. Partition: 每个 topic 可以划分多个分区(每个 Topic 至少有一个分区),同一 topic 下的不同分区包含的消息是不同的.每个消息在被添加到分区时,
【消息队列】kafka是如何保证消息不被重复消费的
一.kafka自带的消费机制 kafka有个offset的概念,当每个消息被写进去后,都有一个offset,代表他的序号,然后consumer消费该数据之后,隔一段时间,会把自己消费过的消息的offset提交一下,代表我已经消费过了.下次我要是重启,就会继续从上次消费到的offset来继续消费. 但是当我们直接kill进程了,再重启.这会导致consumer有些消息处理了,但是没来得及提交offset.等重启之后,少数消息就会再次消费一次. 其他MQ也会有这种重复消费的问题,那么针对这种问题,我
分布式消息队列RocketMQ&Kafka -- 消息的“顺序消费”
在说到消息中间件的时候,我们通常都会谈到一个特性:消息的顺序消费问题.这个问题看起来很简单:Producer发送消息1, 2, 3... Consumer按1, 2, 3...顺序消费. 但实际情况却是:无论RocketMQ,还是Kafka,缺省都不保证消息的严格有序消费! 这个特性看起来很简单,但为什么缺省他们都不保证呢? “严格的顺序消费”有多么困难 下面就从3个方面来分析一下,对于一个消息中间件来说,”严格的顺序消费”有多么困难,或者说不可能. 发送端 发送端不能异步发送,异步发送在发送失
公司内部一次关于kafka消息队列消费积压故障复盘分享
背景现象 1.20晚上8点业务线开始切换LBS相关流量,在之后的1个小时时间内,积压量呈上升趋势,一路到达50W左右,第二天的图没贴出具体是50W数字,以下是第一天晚上的贴图部分. 现象一: 现象二: 当时现场图后来就找不回来了,凭印象说明了一下数字. 简要说明一下上述两个图 图一:其实很明显,明显看出,消费者消费速度明显跟不上生产者的发送速度,导致出现积压情况. 图二:图二就有点意思了,因为上游通过Kafka消息队列发送消息给我,分区数是20个.由于消费组内消费者实例是17个,所以从宏观上分析
Kafka消息时间戳(kafka message timestamp)
最近碰到了消息时间戳的问题,于是花了一些功夫研究了一下,特此记录一下. Kafka消息的时间戳 在消息中增加了一个时间戳字段和时间戳类型.目前支持的时间戳类型有两种: CreateTime 和 LogAppendTime 前者表示producer创建这条消息的时间:后者表示broker接收到这条消息的时间(严格来说,是leader broker将这条消息写入到log的时间) 为什么要加入时间戳? 引入时间戳主要解决3个问题: 日志保存(log retention)策略:Kafka目前会定
Kafka 消息监控 - Kafka Eagle
1.概述 在开发工作当中,消费 Kafka 集群中的消息时,数据的变动是我们所关心的,当业务并不复杂的前提下,我们可以使用 Kafka 提供的命令工具,配合 Zookeeper 客户端工具,可以很方便的完成我们的工作.随着业务的复杂化,Group 和 Topic 的增加,此时我们使用 Kafka 提供的命令工具,已预感到力不从心,这时候 Kafka 的监控系统此刻便尤为显得重要,我们需要观察消费应用的详情. 监控系统业界有很多杰出的开源监控系统.我们在早期,有使用 KafkaMonitor 和
kafka 消息服务
apache kafka参考 http://kafka.apache.org/documentation.html 消息队列方式: 点对点: 消息生产者生产消息发送到queue中,然后消息消费者从queue中取出并且消费消息.这里要注意: 消息被消费以后,queue中不再有存储,所以消息消费者不可能消费到已经被消费的消息. Queue支持存在多个消费者,但是对一个消息而言,只会有一个消费者可以消费. 发布/订阅: 消息生产者(发布)将消息发布到topic中,同时有多个消息消费者(订阅)消费该消息
Kafka简介及使用PHP处理Kafka消息
Kafka简介及使用PHP处理Kafka消息 Kafka 是一种高吞吐的分布式消息系统,能够替代传统的消息队列用于解耦合数据处理,缓存未处理消息等,同时具有更高的吞吐率,支持分区.多副本.冗余,因此被广泛用于大规模消息数据处理应用. Kafka的特点: 以时间复杂度为O(1)的方式提供消息持久化能力,即使对TB级以上数据也能保证常数时间复杂度的访问性能. 高吞吐率.即使在非常廉价的商用机器上也能做到单机支持每秒100K条以上消息的传输.[据了解,Kafka每秒可以生产约25万消息(50 MB),
如何在优雅地Spring 中实现消息的发送和消费
本文将对rocktmq-spring-boot的设计实现做一个简单的介绍,读者可以通过本文了解将RocketMQ Client端集成为spring-boot-starter框架的开发细节,然后通过一个简单的示例来一步一步的讲解如何使用这个spring-boot-starter工具包来配置,发送和消费RocketMQ消息. 通过本文,您将了解到: Spring的消息框架介绍 rocketmq-spring-boot具体实现 使用示例 前言 上世纪90年代末,随着Java EE(Enterprise
kafka系列八、kafka消息重复和丢失的场景及解决方案分析
消息重复和丢失是kafka中很常见的问题,主要发生在以下三个阶段: 生产者阶段 broke阶段 消费者阶段 一.生产者阶段重复场景 1.根本原因 生产发送的消息没有收到正确的broke响应,导致producer重试. producer发出一条消息,broke落盘以后因为网络等种种原因发送端得到一个发送失败的响应或者网络中断,然后producer收到一个可恢复的Exception重试消息导致消息重复. 2.重试过程 说明: 1. new KafkaProducer()后创建一个后台线程KafkaT
kafka消息队列的简单理解
kafka在大数据.分布式架构中都很流行.kafka可以进行流式计算,也可以做为日志系统,还可以用于消息队列. 本篇主要是消息队列相关的知识. 零.kafka作为消息队列的优点: 分布式的系统 高吞吐量.即使存储了许多TB的消息,它也保持稳定的性能. 数据保留在磁盘上,因此它是持久的. 一.pull模式 消息队列有push模式和pull模式.push模式是消息队列推送给消息消费者,pull模式是消息消费者从消息队列中拉取. 二.发布 - 订阅消息系统 kafka是一个分布式的发布 - 订阅(pu
Kafka消息重新发送
Kafka消息重新发送 1. 使用kafka消息队列做消息的发布.订阅,如果consumer端消费出问题,导致数据并没有消费,此时不需要担心,数据并不会立刻丢失,kafka会把数据在服务器的磁盘上默认存储7天,或者自己指定有两种方式:1)指定时间,log.retention.hours=168:2)指定大小,log.segment.bytes=1073741824.此时就可以通过重置某个topic的offset来是消息重新发送,进行消费 2. 查看topic的offset
Kafka消息系统基础知识索引
一些观念的修正 从 0.9 版本开始,Kafka 的标语已经从“一个高吞吐量,分布式的消息系统”改为"一个分布式流平台". Kafka不仅仅是一个队列,而且是一个存储,有超强的堆积能力. Kafka不仅用在吞吐量高的大数据场景,也可以用在有事务要求的业务系统上,但性能较低. Kafka不是Topic越多越好,由于其设计原理,在数量达到阈值后,其性能和Topic数量成反比. 引入了消息队列,就等于引入了异步,不管你是出于什么目的.这通常意味着业务流程的改变,甚至产品体验的变更. 消息系统
apache kafka消息服务
apache kafka中国社区QQ群:162272557 apache kafka参考 http://kafka.apache.org/documentation.html 消息队列分类: 点对点: 消息生产者生产消息发送到queue中,然后消息消费者从queue中取出并且消费消息.这里要注意: 消息被消费以后,queue中不再有存储,所以消息消费者不可能消费到已经被消费的消息. Queue支持存在多个消费者,但是对一个消息而言,只会有一个消费者可以消费. 发布/订阅 消息生产者(发布)将消息
Kafka消息系统
一.基本概念 Kafka是一个分布式的.可分区的.可复制的消息系统.它提供了普通消息系统的功能,但具有自己独特的设计. 首先让我们看几个基本的消息系统术语: Kafka将消息以topic为单位进行归纳. 将向Kafka topic发布消息的程序成为producers. 将预订topics并消费消息的程序成为consumer. Kafka以集群的方式运行,可以由一个或多个服务组成,每个服务叫做一个broker. producers通过网络将消息发送到Kafka集群,集群向消费者提供消息,如下图所示
记一次线上Kafka消息堆积踩坑总结
2018年05月31日 13:26:59 xiaoguozi0218 阅读数:2018更多 个人分类: 大数据 年后上线的系统,与其他业务系统的通信方式采用了第三代消息系统中间件Kafka.由于是第一次使用,踩了很多坑,通过这篇博客和大家分享一下,也算是做个总结,以便以后温故而知新. 一.线上问题 系统平稳运行两个多月,基本上没有问题,知道最近几天,突然出现Kafka手动提交失败,堆栈信息如下: 通过堆栈信息可以看出,有两个重要参数: session.timeout 和 max.poll.
一文看懂Kafka消息格式的演变
摘要 对于一个成熟的消息中间件而言,消息格式不仅关系到功能维度的扩展,还牵涉到性能维度的优化.随着Kafka的迅猛发展,其消息格式也在不断的升级改进,从0.8.x版本开始到现在的1.1.x版本,Kafka的消息格式也经历了3个版本.本文这里主要来讲述Kafka的三个版本的消息格式的演变,文章偏长,建议先关注后鉴定. Kafka根据topic(主题)对消息进行分类,发布到Kafka集群的每条消息都需要指定一个topic,每个topic将被分为多个partition(分区).每个partition在
kafka消息的可靠性
本文来自网易云社区 作者:田宏增 Kafka的高可靠性的保障来源于其健壮的副本(replication)策略.通过调节其副本相关参数,可以使得Kafka在性能和可靠性之间运转的游刃有余.Kafka从0.8.x版本开始提供partition级别的复制,replication的数量可以在$KAFKA_HOME/config/server.properties中配置. Kafka中消息是以topic进行分类的,生产者通过topic向Kafka broker发送消息,消费者通过topic读取数据.然而t
Kafka实战:如何把Kafka消息时延秒降10倍
背景 国内某大型税务系统,业务应用分布式上云改造. 业务难题 如上图所示是模拟客户的业务网页构建的一个并发访问模型.用户在页面点击从而产生一个HTTP请求,这个请求发送到业务生产进程,就会启动一个投递线程(Deliver Thread)调用Kafka的SDK接口,并发送3条消息到DMS(分布式消息服务),每条消息大小3k,需要等待3条消息都被处理完成后才会返回请求响应⑧.当消息达到DMS后,业务消费进程调用Kafka的消费接口把消息取出来,然后将每条消息放到一个响应线程(Response Thr
热门专题
C 类中指向自身的指针称为
thymeleaf 得到session中的数据
mysql5 空字符串插入报错
pycharm交互模式怎么打开
Linux守护进程管理 Daemontools
input checkbox 获取值
tomcat-win64 帆软
cocos2dx 混合后透明
c#用getpixel获取鼠标点击处的颜色
cesium Model 不显示
thinkphp5 微信小程序 获取用户步数
OpenFileDialog filter用变量
全志H3 nginx
dev chartcontrol用法
tinyxml xerces效率
vue用class存储信息 是不是可以不用vuex
国内 npm mirror
a标签 margin bottom
maven3.9下载
mysql date类型设置默认时间