首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
kafka消息积压怎么处理
2024-08-24
Kafka集群消息积压问题及处理策略
通常情况下,企业中会采取轮询或者随机的方式,通过Kafka的producer向Kafka集群生产数据,来尽可能保证Kafka分区之间的数据是均匀分布的. 在分区数据均匀分布的前提下,如果我们针对要处理的topic数据量等因素,设计出合理的Kafka分区数量.对于一些实时任务,比如Spark Streaming/Structured-Streaming.Flink和Kafka集成的应用,消费端不存在长时间"挂掉"的情况即数据一直在持续被消费,那么一般不会产生Kafka数据积压的情况. 但
公司内部一次关于kafka消息队列消费积压故障复盘分享
背景现象 1.20晚上8点业务线开始切换LBS相关流量,在之后的1个小时时间内,积压量呈上升趋势,一路到达50W左右,第二天的图没贴出具体是50W数字,以下是第一天晚上的贴图部分. 现象一: 现象二: 当时现场图后来就找不回来了,凭印象说明了一下数字. 简要说明一下上述两个图 图一:其实很明显,明显看出,消费者消费速度明显跟不上生产者的发送速度,导致出现积压情况. 图二:图二就有点意思了,因为上游通过Kafka消息队列发送消息给我,分区数是20个.由于消费组内消费者实例是17个,所以从宏观上分析
推送kafka消息失败
晚上变更 怎么都推不过去,蛋疼,睡饱后加了个hosts没想到好了,然后搜了一下,大概是如下的原因 转自 https://www.cnblogs.com/linlianhuan/p/9258061.html kafka配置的问题排查 问题反馈: xx现场测试环境下,整个平台的数据,除了原始数据模块,其他模块正常运行.相同版本的包,在线上环境上原始数据的订阅是正常的,但是测试环境没有,查看所有相关的日志,均没有报异常,且日志中有正常显示已经把数据发送到kafka.但是从kafka的日志里查,没
RabbitMQ:消息丢失 | 消息重复 | 消息积压的原因+解决方案+网上学不到的使用心得
前言 首先说一点,企业中最常用的实际上既不是RocketMQ,也不是Kafka,而是RabbitMQ. RocketMQ很强大,但主要是阿里推广自己的云产品而开源出来的一款消息队列,其实中小企业用RocketMQ的没有想象中那么多. 深层次的原因在于兔宝在中小企业普及更早,经受的考验也更久,很容易产生「回头客」,当初随RabbitMQ成长的一批人才如今大部分都已成为企业中的中坚骨干,技术选型亲睐RabbitMQ的几率就更高. 至于Kafka,主要还是用在大数据和日志采集方面,除了一些公司有特定的
Kafka消息时间戳(kafka message timestamp)
最近碰到了消息时间戳的问题,于是花了一些功夫研究了一下,特此记录一下. Kafka消息的时间戳 在消息中增加了一个时间戳字段和时间戳类型.目前支持的时间戳类型有两种: CreateTime 和 LogAppendTime 前者表示producer创建这条消息的时间:后者表示broker接收到这条消息的时间(严格来说,是leader broker将这条消息写入到log的时间) 为什么要加入时间戳? 引入时间戳主要解决3个问题: 日志保存(log retention)策略:Kafka目前会定
Kafka 消息监控 - Kafka Eagle
1.概述 在开发工作当中,消费 Kafka 集群中的消息时,数据的变动是我们所关心的,当业务并不复杂的前提下,我们可以使用 Kafka 提供的命令工具,配合 Zookeeper 客户端工具,可以很方便的完成我们的工作.随着业务的复杂化,Group 和 Topic 的增加,此时我们使用 Kafka 提供的命令工具,已预感到力不从心,这时候 Kafka 的监控系统此刻便尤为显得重要,我们需要观察消费应用的详情. 监控系统业界有很多杰出的开源监控系统.我们在早期,有使用 KafkaMonitor 和
kafka消息会不会丢失
转载:https://baijiahao.baidu.com/s?id=1583469327946027281&wfr=spider&for=pc 消息发送方式 想清楚Kafka发送的消息是否丢失,需要先了解Kafka消息的发送方式. Kafka消息发送分同步(sync).异步(async)两种方式 默认是使用同步方式,可通过producer.type属性进行配置: Kafka保证消息被安全生产,有三个选项分别是0,1,-1 通过request.required.acks属性进行配置: 0
Kafka简介及使用PHP处理Kafka消息
Kafka简介及使用PHP处理Kafka消息 Kafka 是一种高吞吐的分布式消息系统,能够替代传统的消息队列用于解耦合数据处理,缓存未处理消息等,同时具有更高的吞吐率,支持分区.多副本.冗余,因此被广泛用于大规模消息数据处理应用. Kafka的特点: 以时间复杂度为O(1)的方式提供消息持久化能力,即使对TB级以上数据也能保证常数时间复杂度的访问性能. 高吞吐率.即使在非常廉价的商用机器上也能做到单机支持每秒100K条以上消息的传输.[据了解,Kafka每秒可以生产约25万消息(50 MB),
【转】解决Maxwell发送Kafka消息数据倾斜问题
最近用Maxwell解析MySQL的Binlog,发送到Kafka进行处理,测试的时候发现一个问题,就是Kafka的Offset严重倾斜,三个partition,其中一个的offset已经快200万了,另外两个offset才不到两百.Kafka数据倾斜的问题一般是由于生产者使用的Partition接口实现类对分区处理的问题,一般是对key做hash之后,对分区数取模.当出现数据倾斜时,小量任务耗时远高于其它任务,从而使得整体耗时过大,未能充分发挥分布式系统的并行计算优势(参考Apache Kaf
kafka消息的分发与消费
关于 Topic 和 Partition: Topic: 在 kafka 中,topic 是一个存储消息的逻辑概念,可以认为是一个消息集合.每条消息发送到 kafka 集群的消息都有一个类别.物理上来说,不同的 topic 的消息是分开存储的,每个 topic 可以有多个生产者向它发送消息,也可以有多个消费者去消费其中的消息. Partition: 每个 topic 可以划分多个分区(每个 Topic 至少有一个分区),同一 topic 下的不同分区包含的消息是不同的.每个消息在被添加到分区时,
基于Kafka消息驱动最终一致事务(二)
实现用例分析 上篇基于Kafka消息驱动最终一致事务(一)介绍BASE的理论,接着我们引入一个实例看如何实现BASE,我们会用图7显示的算法实现BASE.
基于Kafka消息驱动最终一致事务(一)
基本可用软状态最终一致事务 本用例分两个数据库分别是用户库和交易库,不使用分布式事务,使用基于消息驱动实现基本可用软状态最终一致事务(BASE).现在说明下事务逻辑演化步骤,尊从CAP原则,即分布式系统不能全部确保一致性.可用性.分区容错性,只能三选二.文章里从一致性模式讨论,例子里每次出售物品时,将一行添加到交易表中,并更新买方和卖方的数量. 使用ACID风格的事务这是强一致性事务,SQL将如图所示.
kafka消息队列的简单理解
kafka在大数据.分布式架构中都很流行.kafka可以进行流式计算,也可以做为日志系统,还可以用于消息队列. 本篇主要是消息队列相关的知识. 零.kafka作为消息队列的优点: 分布式的系统 高吞吐量.即使存储了许多TB的消息,它也保持稳定的性能. 数据保留在磁盘上,因此它是持久的. 一.pull模式 消息队列有push模式和pull模式.push模式是消息队列推送给消息消费者,pull模式是消息消费者从消息队列中拉取. 二.发布 - 订阅消息系统 kafka是一个分布式的发布 - 订阅(pu
Kafka消息重新发送
Kafka消息重新发送 1. 使用kafka消息队列做消息的发布.订阅,如果consumer端消费出问题,导致数据并没有消费,此时不需要担心,数据并不会立刻丢失,kafka会把数据在服务器的磁盘上默认存储7天,或者自己指定有两种方式:1)指定时间,log.retention.hours=168:2)指定大小,log.segment.bytes=1073741824.此时就可以通过重置某个topic的offset来是消息重新发送,进行消费 2. 查看topic的offset
apache kafka消息服务
apache kafka中国社区QQ群:162272557 apache kafka参考 http://kafka.apache.org/documentation.html 消息队列分类: 点对点: 消息生产者生产消息发送到queue中,然后消息消费者从queue中取出并且消费消息.这里要注意: 消息被消费以后,queue中不再有存储,所以消息消费者不可能消费到已经被消费的消息. Queue支持存在多个消费者,但是对一个消息而言,只会有一个消费者可以消费. 发布/订阅 消息生产者(发布)将消息
一文看懂Kafka消息格式的演变
摘要 对于一个成熟的消息中间件而言,消息格式不仅关系到功能维度的扩展,还牵涉到性能维度的优化.随着Kafka的迅猛发展,其消息格式也在不断的升级改进,从0.8.x版本开始到现在的1.1.x版本,Kafka的消息格式也经历了3个版本.本文这里主要来讲述Kafka的三个版本的消息格式的演变,文章偏长,建议先关注后鉴定. Kafka根据topic(主题)对消息进行分类,发布到Kafka集群的每条消息都需要指定一个topic,每个topic将被分为多个partition(分区).每个partition在
Kafka实战:如何把Kafka消息时延秒降10倍
背景 国内某大型税务系统,业务应用分布式上云改造. 业务难题 如上图所示是模拟客户的业务网页构建的一个并发访问模型.用户在页面点击从而产生一个HTTP请求,这个请求发送到业务生产进程,就会启动一个投递线程(Deliver Thread)调用Kafka的SDK接口,并发送3条消息到DMS(分布式消息服务),每条消息大小3k,需要等待3条消息都被处理完成后才会返回请求响应⑧.当消息达到DMS后,业务消费进程调用Kafka的消费接口把消息取出来,然后将每条消息放到一个响应线程(Response Thr
转载来自朱小厮博客的 一文看懂Kafka消息格式的演变
转载来自朱小厮博客的 一文看懂Kafka消息格式的演变 ✎摘要 对于一个成熟的消息中间件而言,消息格式不仅关系到功能维度的扩展,还牵涉到性能维度的优化.随着Kafka的迅猛发展,其消息格式也在不断的升级改进,从0.8.x版本开始到现在的1.1.x版本,Kafka的消息格式也经历了3个版本.本文这里主要来讲述Kafka的三个版本的消息格式的演变,文章偏长,建议先关注后鉴定. Kafka根据topic(主题)对消息进行分类,发布到Kafka集群的每条消息都需要指定一个topic,每个topi
spark streaming 接收kafka消息之二 -- 运行在driver端的receiver
先从源码来深入理解一下 DirectKafkaInputDStream 的将 kafka 作为输入流时,如何确保 exactly-once 语义. val stream: InputDStream[(String, String, Long)] = KafkaUtils.createDirectStream [String, String, StringDecoder, StringDecoder, (String, String, Long)]( ssc, kafkaParams, fromO
spark streaming 接收kafka消息之五 -- spark streaming 和 kafka 的对接总结
Spark streaming 和kafka 处理确保消息不丢失的总结 接入kafka 我们前面的1到4 都在说 spark streaming 接入 kafka 消息的事情.讲了两种接入方式,以及spark streaming 如何和kafka协作接收数据,处理数据生成rdd的 主要有如下两种方式 基于分布式receiver 基于receiver的方法采用Kafka的高级消费者API,每个executor进程都不断拉取消息,并同时保存在executor内存与HDFS上的预写日志(write-a
初试kafka消息队列中间件一 (只适合初学者哈)
初试kafka消息队列中间件一 今天闲来有点无聊,然后就看了一下关于消息中间件的资料, 简单一点的理解哈,网上都说的太高大上档次了,字面意思都想半天: 也就是用作消息通知,比如你想告诉某某你喜欢他,或者要开会了,通知给哪些人: 可以分不同的主题,不同的接受方式. 我这也是第一次动手哈,以前都只是看理论知识: 理论大家www.baidu.com一番都了解的七七八八了哈 ,我就直接上动手的过程了. 需要先进行下载: 这里是下载地址http://kafka.apache.org/downloads:
热门专题
mysql 系统变量 查询
idea部署tomcat 不生效
socket套接字UDP接收的函数设置成阻塞式有什么好处
ubuntu 20 更新文件夹名称语言
datagrid button 绑定
重装系统to disk是什么意思中文意思
python3 os 获取当前路径
java对数据库的操作中,若遇到sql中的关键字怎么办
lrzbundle.js 不改变图片文件类型
DynamicDataDisplay移动正弦波
IAR用JLINK烧录程序,与用烧录器烧录程序,运行结果不同
java redis计数器统计数量
Vue 在main中定义一个常量
java判断两个map中的key完全相同
tp6 获取毫秒时间戳
javafx 系统自带阴影
css用户登录的小三角
cmd 查看tomcat 启动参数
IntelliJ IDEA 2019.1.1破解
python3 最大堆‘’