首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
kafka 数据倾斜 如何处理
2024-09-04
【Kafka】Kafka-数据倾斜问题-参考资料-解决方案
Kafka-数据倾斜问题-参考资料-解决方案 Spark Master at spark://node-01:7077 kafka 多线程producer 数据 不均匀_百度搜索 kafka 分片使用不均匀问题如何解决,求救 - OrcHome (1 封私信)kafka的生产者程序是用单例类,还是把KafkaProducer对象声明成static final? - 知乎 kafka producer性能调优 - 邹天得 - 博客园 (1 封私信)kafka是个大坑,大家怎么看,谢谢大家? - 知
【转】解决Maxwell发送Kafka消息数据倾斜问题
最近用Maxwell解析MySQL的Binlog,发送到Kafka进行处理,测试的时候发现一个问题,就是Kafka的Offset严重倾斜,三个partition,其中一个的offset已经快200万了,另外两个offset才不到两百.Kafka数据倾斜的问题一般是由于生产者使用的Partition接口实现类对分区处理的问题,一般是对key做hash之后,对分区数取模.当出现数据倾斜时,小量任务耗时远高于其它任务,从而使得整体耗时过大,未能充分发挥分布式系统的并行计算优势(参考Apache Kaf
Spark性能优化之道——解决Spark数据倾斜(Data Skew)的N种姿势
原创文章,同步首发自作者个人博客转载请务必在文章开头处注明出处. 摘要 本文结合实例详细阐明了Spark数据倾斜的几种场景以及对应的解决方案,包括避免数据源倾斜,调整并行度,使用自定义Partitioner,使用Map侧Join代替Reduce侧Join,给倾斜Key加上随机前缀等. 为何要处理数据倾斜(Data Skew) 什么是数据倾斜 对Spark/Hadoop这样的大数据系统来讲,数据量大并不可怕,可怕的是数据倾斜. 何谓数据倾斜?数据倾斜指的是,并行处理的数据集中,某一部分(如Spar
spark数据倾斜
数据倾斜的主要问题在于,某个分区数量很巨大,在做map运算的时候,将会发生别的分区task很快计算完成,但是某几个分区task的计算成为了系统的瓶颈,明显超过其他分区时间: 1.方案:Kafka的随机主题 如果kafka的topic和分区关联,而且kafka是专用的,那么其实kafka如果能够和随机主机,那么数据将会随机打入到各个分区中,这样可以解决数据热点问题: 2. 方案:将不可切割的文件转换为可切割文件 对于gzip这类文件最好转化为可切割文件:因为对于不可切割的压缩文件,将会作为
Hive学习之路 (十九)Hive的数据倾斜
1.什么是数据倾斜? 由于数据分布不均匀,造成数据大量的集中到一点,造成数据热点 2.Hadoop 框架的特性 A.不怕数据大,怕数据倾斜 B.Jobs 数比较多的作业运行效率相对比较低,如子查询比较多 C. sum,count,max,min 等聚集函数,通常不会有数据倾斜问题 3.主要表现 任务进度长时间维持在 99%或者 100%的附近,查看任务监控页面,发现只有少量 reduce 子任务未完成,因为其处理的数据量和其他的 reduce 差异过大. 单一 reduce 处理的记录数和平均记
数据倾斜是多么痛?spark作业调优秘籍
目录视图 摘要视图 订阅 [观点]物联网与大数据将助推工业应用的崛起,你认同么? CSDN日报20170703——<从高考到程序员——我一直在寻找答案> [直播]探究Linux的总线.设备.驱动模型! 数据倾斜是多么痛?spark作业调优秘籍 2017-06-27 13:28 39人阅读 评论(0) 收藏 举报 分类: Spark(124) 原文:https://mp.weixin.qq.com/s?__biz=MzI5OTAwMTM1MQ==&mid=2456
【转】数据倾斜是多么痛?spark作业/面试/调优必备秘籍
原博文出自于: http://sanwen.net/a/gqkotbo.html 感谢! 来源:数盟 调优概述 有的时候,我们可能会遇到大数据计算中一个最棘手的问题——数据倾斜,此时Spark作业的性能会比期望差很多.数据倾斜调优,就是使用各种技术方案解决不同类型的数据倾斜问题,以保证Spark作业的性能. 数据倾斜是多么痛?!!! 如果数据倾斜没有解决,完全没有可能进行性能调优,其他所有的调优手段都是一个笑话.数据倾斜是最能体现一个spark大数据工程师水平的性能调优问题. 数据倾斜如果能够解
Hive的数据倾斜
目录 什么是数据倾斜 Hadoop框架的特性 主要表现 容易数据倾斜的情况 产生数据清洗的原因 业务场景 空值产生的数据倾斜 不同数据类型关联产生数据倾斜 大小表关联查询产生数据倾斜 一.什么是数据倾斜 由于数据分布不均匀,造成数据大量的集中到一点,造成数据热点 二.Hadoop框架的特性 不怕数据大,怕数据倾斜 jobs数比较多的作业运行效率相对比较低,如子查询比较多 sum.count.max.min等聚合函数,通常不会有数据倾斜问题 三.主要表现 任务进度长时间维持在99%或者100%的附
Spark数据倾斜解决方案(转)
本文转发自技术世界,原文链接 http://www.jasongj.com/spark/skew/ Spark性能优化之道——解决Spark数据倾斜(Data Skew)的N种姿势 发表于 2017-02-28 | 更新于 2017-10-17 | 本文结合实例详细阐明了Spark数据倾斜的几种场景以及对应的解决方案,包括避免数据源倾斜,调整并行度,使用自定义Partitioner,使用Map侧Join代替Reduce侧Join,给倾斜Key加上随机前缀等. 摘要 本文结合实例详细阐明了Sp
spark数据倾斜处理
spark数据倾斜处理 危害: 当出现数据倾斜时,小量任务耗时远高于其它任务,从而使得整体耗时过大,未能充分发挥分布式系统的并行计算优势. 当发生数据倾斜时,部分任务处理的数据量过大,可能造成内存不足使得任务失败,并进而引进整个应用失败. 表现:同一个stage的多个task执行时间不一致. 原因: 机器本身性能,导致速度不一致. 数据来源的问题: 从数据源直接读取.如读取HDFS,Kafka 读取上一个Stage的Shuffle数据 如何缓解/消除数据倾斜 kafka:取决于kafka top
Spark 调优之数据倾斜
什么是数据倾斜? Spark 的计算抽象如下 数据倾斜指的是:并行处理的数据集中,某一部分(如 Spark 或 Kafka 的一个 Partition)的数据显著多于其它部分,从而使得该部分的处理速度成为整个数据集处理的瓶颈. 如果数据倾斜不能解决,其他的优化手段再逆天都白搭,如同短板效应,任务完成的效率不是看最快的task,而是最慢的那一个. 数据倾导致的后果: 数据倾斜直接可能会导致一种情况:Out Of Memory 或者GC 超时. 任务不一定失败,但是极端慢.(但是目前我遇到的数据倾斜
最详细10招Spark数据倾斜调优
最详细10招Spark数据倾斜调优 数据量大并不可怕,可怕的是数据倾斜 . 数据倾斜发生的现象 绝大多数 task 执行得都非常快,但个别 task 执行极慢. 数据倾斜发生的原理 在进行 shuffle 的时候,必须将各个节点上相同的 key 的数据拉取到某个节点 上的一个 task 来进行处理,比如按照 key 进行聚合或 join 等操作.此时如果某个 key 对应的数据量特 别大的话,就会发生数据倾斜. 数据倾斜的危害 当出现数据倾斜时,小量任务耗时远高于其它任务,从而使得整体耗时过大,
Spark-6-如何缓解消除数据倾斜
1 尽量避免数据源的数据倾斜 比如数据源是Kafka 以Spark Stream通过DirectStream方式读取Kafka数据为例.由于Kafka的每一个Partition对应Spark的一个Task(Partition),所以Kafka内相关Topic的各Partition之间数据是否平衡,直接决定Spark处理该数据时是否会产生数据倾斜. Kafka某一Topic内消息在不同Partition之间的分布,主要由Producer端所使用的Partition实现类决定.如果使用随机Parti
Spark-4-为何要处理数据倾斜
什么是数据倾斜 对Spark/Hadoop这样的大数据系统来讲,数据量大并不可怕,可怕的是数据倾斜. 何谓数据倾斜?数据倾斜指的是,并行处理的数据集中,某一部分(如Spark或Kafka的一个Partition)的数据显著多于其它部分,从而使得该部分的处理速度成为整个数据集处理的瓶颈. 如果数据倾斜没有解决,完全没有可能进行性能调优,其他所有的调优手段都是一个笑话.数据倾斜是最能体现一个spark大数据工程师水平的性能调优问题. 数据倾斜如果能够解决的话,代表对spark运行机制了如指掌. 数据
Spark面试题(五)——数据倾斜调优
1.数据倾斜 数据倾斜指的是,并行处理的数据集中,某一部分(如Spark或Kafka的一个Partition)的数据显著多于其它部分,从而使得该部分的处理速度成为整个数据集处理的瓶颈. 数据倾斜俩大直接致命后果. 1.数据倾斜直接会导致一种情况:Out Of Memory. 2.运行速度慢. 主要是发生在Shuffle阶段.同样Key的数据条数太多了.导致了某个key(下图中的80亿条)所在的Task数据量太大了.远远超过其他Task所处理的数据量. 一个经验结论是:一般情况下,OOM的原因都是
读取hdfs文件之后repartition 避免数据倾斜
场景一: api: textFile("hfds://....").map((key,value)).reduceByKey(...).map(实际的业务计算逻辑) 场景:hdfs的某个文件有183个block,他们的大小分布非常不均匀时,比如有的是200M,有的是1M,有的是10K.此时spark计算非常非常慢,通过web ui监视发现,有的task处理了好几百M的数据,有的 task之处理了几k,导致严重的数据倾斜. 其中stage0阶段有183个task,这个阶段几乎没有什么计
Gobblin采集kafka数据
作者:Syn良子 出处:http://www.cnblogs.com/cssdongl 转载请注明出处 找时间记录一下利用Gobblin采集kafka数据的过程,话不多说,进入正题 一.Gobblin环境变量准备 需要配置好Gobblin0.7.0工作时对应的环境变量,可以去Gobblin的bin目录的gobblin-env.sh配置,比如 export GOBBLIN_JOB_CONFIG_DIR=~/gobblin/gobblin-config-dir export GOBBLIN_WORK
Hive_数据倾斜处理
Hive中三种join map join (小表join大表,将小表加入到内存) 设置map join: hive.auto.convert.join=true hive.mapjoin.smalltable.filesize=2500000; PS:如果有一张表是小表便自动执行mapjoin,根绝表大小是否超过2500000区分 隐式的执行 /*+MAPJOIN(tb_name)*/ reduce join(大表join大表,效率很低) SMB join(sort merge bucket j
[大牛翻译系列]Hadoop(14)MapReduce 性能调优:减小数据倾斜的性能损失
6.4.4 减小数据倾斜的性能损失 数据倾斜是数据中的常见情况.数据中不可避免地会出现离群值(outlier),并导致数据倾斜.这些离群值会显著地拖慢MapReduce的执行.常见的数据倾斜有以下几类: 数据频率倾斜——某一个区域的数据量要远远大于其他区域. 数据大小倾斜——部分记录的大小远远大于平均值. 在map端和reduce端都有可能发生数据倾斜.在map端的数据倾斜会让多样化的数据集的处理效率更低.在reduce端的数据倾斜常常来源于MapReduce的默认分区器. 数据倾斜会导致map
hive大数据倾斜总结
在做Shuffle阶段的优化过程中,遇到了数据倾斜的问题,造成了对一些情况下优化效果不明显.主要是因为在Job完成后的所得到的 Counters是整个Job的总和,优化是基于这些Counters得出的平均值,而由于数据倾斜的原因造成map处理数据量的差异过大,使得这些平均 值能代表的价值降低.Hive的执行是分阶段的,map处理数据量的差异取决于上一个stage的reduce输出,所以如何将数据均匀的分配到各个 reduce中,就是解决数据倾斜的根本所在.规避错误来更好的运行比解决错误更高效.在
java spark-streaming接收TCP/Kafka数据
本文将展示 1.如何使用spark-streaming接入TCP数据并进行过滤: 2.如何使用spark-streaming接入TCP数据并进行wordcount: 内容如下: 1.使用maven,先解决pom依赖 <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-streaming-kafka_2.10</artifactId> <version>1
热门专题
排序与分类汇总任务书
vmware间歇性断网
sqlserver中无法更新识别栏位
EXCLE宏输出固定字母
修改 vue echarts画布大小
SQL SERVER 如何建用户只能访问视图
Fiddler安装证书和www.bing.com无法访问
两个el-select选择框联动
linq 多表关联左查询 并转为类
jquery validate 多个同名
python中check_url
java jdbc sqlserver端口号
如何多次调用 window.onload
高性能服务器的瓶颈在哪里,有什么优化的方法
小程序页面内容底部看不到了
allowMultiQueries=true 未生效
npoimapper 合并单元格
twincat3功能块
ios 开发 配置网络连接
jboss与servlet的对应关系