KCF目标跟踪方法分析与总结 correlation filter Kernelized correlation filter tracking 读"J. F. Henriques, R. Caseiro, P. Martins, J. Batista, 'High-speed tracking with kernelized correlation filters'" 笔记 KCF是一种鉴别式追踪方法,这类方法一般都是在追踪过程中训练一个目标检测器,使用目标检测器去检测下一帧预测位置
一.算法介绍 KCF全称为Kernel Correlation Filter 核相关滤波算法.是在2014年由Joao F. Henriques, Rui Caseiro, Pedro Martins, and Jorge Batista提出来的,算法出来之后也算是轰动一时,这个算法不论是在跟踪效果还是跟踪速度上都有十分亮眼的表现,所以引起了一大批的学者对这个算法进行研究以及工业界也在陆续把这个算法应用在实际场景当中.这个算法主页里面有论文还有代码都可以在这里面下载,也有一些简介之类的,这篇文章
读"J. F. Henriques, R. Caseiro, P. Martins, J. Batista, 'High-speed tracking with kernelized correlation filters'" 笔记 KCF是一种鉴别式追踪方法,这类方法一般都是在追踪过程中训练一个目标检测器,使用目标检测器去检测下一帧预测位置是否是目标,然后再使用新检测结果去更新训练集进而更新目标检测器.而在训练目标检测器时一般选取目标区域为正样本,目标的周围区域为负样本,当然越靠近目
if __name__== "__main__" 的意思(作用)python代码复用 转自:大步's Blog http://www.dabu.info/if-__-name__-__main__-mean-function-python-code-reuse.html 有人在学习python脚本时会发现有的脚本下面有几行代码; 1 2 if __name__== "__main__": main() 不明白其中的意思,其实这就是方便我们代码复用的,我们可以在