Cannot interpret feed_dict key as Tensor: Tensor Tensor("Placeholder_8:0", shape=(3, 3, 128, 256), dtype=float32) is not an element of this graph. 后端我使用的是django框架,上传一张图片传入基于tensorflow的keras模型进行预测,重复预测时,报告上述错误.原因大概是第二次预测时,model底层tensorflow的sessio
注:在很长一段时间,MNIST数据集都是机器学习界很多分类算法的benchmark.初学深度学习,在这个数据集上训练一个有效的卷积神经网络就相当于学习编程的时候打印出一行“Hello World!”.下面基于与MNIST数据集非常类似的另一个数据集Fashion-MNIST数据集来构建一个卷积神经网络. 0. Fashion-MNIST数据集 MNIST数据集在机器学习算法中被广泛使用,下面这句话能概况其重要性和地位: In fact, MNIST is often the first data
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat Nov 18 21:22:29 2017 @author: luogan """ from matplotlib.dates import DateFormatter, WeekdayLocator, DayLocator, MONDAY,YEARLY from matplotlib.finance import q
目录 基于 Keras 用深度学习预测时间序列 问题描述 多层感知机回归 多层感知机回归结合"窗口法" 改进方向 扩展阅读 本文主要参考了 Jason Brownlee 的博文 Time Series Prediction With Deep Learning in Keras 原文使用 python 实现模型,这里是用 R 基于 Keras 用深度学习预测时间序列 时间序列预测一直以来是机器学习中的一个难题. 在本篇文章中,将介绍如何在 R 中使用 keras 深度学习包构建神经网络
很久以前就有想过使用深度学习模型来对dota2的对局数据进行建模分析,以便在英雄选择,出装方面有所指导,帮助自己提升天梯等级,但苦于找不到数据源,该计划搁置了很长时间.直到前些日子,看到社区有老哥提到说OpenDota网站(https://www.opendota.com/)提供有一整套的接口可以获取dota数据.通过浏览该网站,发现数据比较齐全,满足建模分析的需求,那就二话不说,开始干活. 这篇文章分为两大部分,第一部分为数据获取,第二部分为建模预测. Part 1,数据获取 1.接口分析
import numpy as np from keras.datasets import boston_housing from keras import layers from keras import models from keras import optimizers from keras.utils.np_utils import to_categorical import matplotlib.pyplot as plt def main(): (train_data, train
代码 import numpy as np from keras.models import Sequential from keras.layers import Dense from keras.layers import LSTM import marksix_1 import talib as ta lt = marksix_1.Marksix() lt.load_data(period=500) # 指标序列 m = 2 series = lt.adapter(loc=', zb_na
import numpy import os from keras import applications from keras.preprocessing.image import ImageDataGenerator from keras import optimizers from keras.models import Sequential, Model from keras.layers import Dropout, Flatten, Dense, GlobalAveragePool