1.对于简单的定制操作,可以通过使用layers.core.Lambda层来完成.该方法的适用情况:仅对流经该层的数据做个变换,而这个变换本身没有需要学习的参数. # 切片后再分别进行embedding和average pooling import numpy as np from keras.models import Sequential from keras.layers import Dense, Activation,Reshape from keras.layers import m
这是一个来自官网的示例:https://github.com/keras-team/keras/blob/master/examples/antirectifier.py 与之前的MINST手写数字识别全连接网络相比,只是本实例使用antirectifier替换ReLU激活函数. '''The example demonstrates how to write custom layers for Keras. # Keras自定义层编写示范 We build a custom activatio
最近在学习SSD的源码,其中有两个自定的层,特此学习一下并记录. import keras.backend as K from keras.engine.topology import InputSpec from keras.engine.topology import Layer import numpy as np class L2Normalization(Layer): ''' Performs L2 normalization on the input tensor with a l