我们以MNIST手写数字识别为例 import numpy as np from keras.datasets import mnist from keras.utils import np_utils from keras.models import Sequential from keras.layers import Dense from keras.optimizers import SGD # 载入数据 (x_train,y_train),(x_test,y_test) = mnist
from tensorflow.python.keras.preprocessing.image import load_img,img_to_array from tensorflow.python.keras.models import Sequential,Model from tensorflow.python.keras.layers import Dense,Flatten,Input import tensorflow as tf from tensorflow.python.ke
TensorFlow: How to freeze a model and serve it with a python API 参考:https://blog.metaflow.fr/tensorflow-how-to-freeze-a-model-and-serve-it-with-a-python-api-d4f3596b3adc 官方的源码:https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/too