首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
kkt条件和对偶问题
2024-08-29
04-拉格朗日对偶问题和KKT条件
04-拉格朗日对偶问题和KKT条件 目录 一.拉格朗日对偶函数 二.拉格朗日对偶问题 三.强弱对偶的几何解释 四.鞍点解释 4.1 鞍点的基础定义 4.2 极大极小不等式和鞍点性质 五.最优性条件与 KKT 条件 5.1 KKT 条件 5.2 KKT 条件与凸问题 六.扰动及灵敏度分析 6.1 扰动问题 6.2 灵敏度分析 七.Reformulation 7.1 引入等式约束 7.2 显示约束与隐式约束的相互转化 7.3 转化目标函数与约束函数 凸优化从入门到放弃完整教程地址:https://w
机器学习——最优化问题:拉格朗日乘子法、KKT条件以及对偶问题
1 前言 拉格朗日乘子法(Lagrange Multiplier) 和 KKT(Karush-Kuhn-Tucker) 条件是求解约束优化问题的重要方法,在有等式约束时使用拉格朗日乘子法,在有不等约束时使用 KKT 条件.当然,这两个方法求得的结果只是必要条件,只有当目标函数是凸函数的情况下,才能保证是充分必要条件. 1.1 最优化问题三种约束条件 1:无约束条件 解决方法通常是函数对变量求导,令导函数等于0的点可能是极值点,将结果带回原函数进行验证. 2:等式约束条件 设目标函数为 $f(
拉格朗日乘子法 - KKT条件 - 对偶问题
接下来准备写支持向量机,然而支持向量机和其他算法相比牵涉较多的数学知识,其中首当其冲的就是标题中的拉格朗日乘子法.KKT条件和对偶问题,所以本篇先作个铺垫. 大部分机器学习算法最后都可归结为最优化问题.对于无约束优化问题: \(\min\limits_\boldsymbol{x} f(\boldsymbol{x})\) (本篇为形式统一,只考虑极小化问题),一般可直接求导并用梯度下降或牛顿法迭代求得最优值. 对于含有等式约束的优化问题,即: \[ \begin{aligned} {\min_{\
约束优化方法之拉格朗日乘子法与KKT条件
引言 本篇文章将详解带有约束条件的最优化问题,约束条件分为等式约束与不等式约束,对于等式约束的优化问题,可以直接应用拉格朗日乘子法去求取最优值:对于含有不等式约束的优化问题,可以转化为在满足 KKT 约束条件下应用拉格朗日乘子法求解.拉格朗日求得的并不一定是最优解,只有在凸优化的情况下,才能保证得到的是最优解,所以本文称拉格朗日乘子法得到的为可行解,其实就是局部极小值,接下来从无约束优化开始一一讲解. 无约束优化 首先考虑一个不带任何约束的优化问题,对于变量 $ x \in \mathbb{R}
真正理解拉格朗日乘子法和 KKT 条件
这篇博文中直观上讲解了拉格朗日乘子法和 KKT 条件,对偶问题等内容. 首先从无约束的优化问题讲起,一般就是要使一个表达式取到最小值: \[min \quad f(x)\] 如果问题是 \(max \quad f(x)\) 也可以通过取反转化为求最小值 \(min \quad-f(x)\),这个是一个习惯.对于这类问题在高中就学过怎么做.只要对它的每一个变量求导,然后让偏导为零,解方程组就行了. 极值点示意图 所以在极值点处一定满足 \(\frac {df(x)}
文本分类学习 (九)SVM入门之拉格朗日和KKT条件
上一篇说到SVM需要求出一个最小的||w|| 以得到最大的几何间隔. 求一个最小的||w|| 我们通常使用 来代替||w||,我们去求解 ||w||2 的最小值.然后在这里我们还忽略了一个条件,那就是约束条件,在上一篇的公式(8)中的不等式就是n维空间中数据点的约束条件.只有在满足这个条件下,求解||w||2的最小值才是有意义的.思考一下,若没有约束条件,那么||w||2的最小值就是0,反应在图中就是H1和H2的距离无限大那么所有点都会在二者之间,都属于同一类,而无法分开了. 求最小值的目标函数
带约束优化问题 拉格朗日 对偶问题 KKT条件
转自:七月算法社区http://ask.julyedu.com/question/276 咨询:带约束优化问题 拉格朗日 对偶问题 KKT条件 关注 | 22 ... 咨询下各位,在机器学习相关内容中,每次看到带约束优化问题,总是看到先用拉格朗日函数变成无约束问题,然后转成求拉格朗日对偶问题,然后有凸函数假设,满足KKT条件时原问题最优解和对偶问题最优解等价. 每次看到这个,总不是很理解为什么要这么做?为什么首先转为无约束问题(这个相对好理解一点,因为容易处理)为什么拉格朗日函数无约束问题要转变
从对偶问题到KKT条件
转自:http://xuehy.github.io/%E4%BC%98%E5%8C%96/2014/04/13/KKT/ 从对偶问题到KKT条件 Apr 13, 2014 对偶问题(Duality) ====== 对偶性是优化问题中一个非常重要的性质,它能够神奇地将许多非凸的优化问题转化成凸的问题,关于这一理论,恐怕又是一个博大精深的横向领域,这里我们一切从简,就从线性规划(LP)问题的对偶问题讲起. 说到对偶,我总是会不自禁地想起射影几何的东西,不过这里的对偶和射影几何无关,我们先来看一个非常
拉格朗日乘子法与KKT条件 && SVM中为什么要用对偶问题
参考链接: 拉格朗日乘子法和KKT条件 SVM为什么要从原始问题变为对偶问题来求解 为什么要用对偶问题 写在SVM之前——凸优化与对偶问题 1. 拉格朗日乘子法与KKT条件 2. SVM 为什么要从原始问题变为对偶问题来求解 1. 首先是我们有不等式约束方程,这就需要我们写成min max的形式来得到最优解.而这种写成这种形式对x不能求导,所以我们需要转换成max min的形式,这时候,x就在里面了,这样就能对x求导了.而为了满足这种对偶变换成立,就需要满足KKT条件(KKT条件是原问题与对偶问
支持向量机(SVM)必备概念(凸集和凸函数,凸优化问题,软间隔,核函数,拉格朗日乘子法,对偶问题,slater条件、KKT条件)
SVM目前被认为是最好的现成的分类器,SVM整个原理的推导过程也很是复杂啊,其中涉及到很多概念,如:凸集和凸函数,凸优化问题,软间隔,核函数,拉格朗日乘子法,对偶问题,slater条件.KKT条件还有复杂的SMO算法! 相信有很多研究过SVM的小伙伴们为了弄懂它们也是查阅了各种资料,着实费了不少功夫!本文便针对SVM涉及到的这些复杂概念进行总结,希望为大家更好地理解SVM奠定基础(图片来自网络). 一.凸集和凸函数 在讲解凸优化问题之前我们先来了解一下凸集和凸函数的概念 凸集:在点集拓扑学与欧几
PRML读书会第七章 Sparse Kernel Machines(支持向量机, support vector machine ,KKT条件,RVM)
主讲人 网神 (新浪微博: @豆角茄子麻酱凉面) 网神(66707180) 18:59:22 大家好,今天一起交流下PRML第7章.第六章核函数里提到,有一类机器学习算法,不是对参数做点估计或求其分布,而是保留训练样本,在预测阶段,计算待预测样本跟训练样本的相似性来做预测,例如KNN方法. 将线性模型转换成对偶形式,就可以利用核函数来计算相似性,同时避免了直接做高维度的向量内积运算.本章是稀疏向量机,同样基于核函数,用训练样本直接对新样本做预测,而且只使用了少量训练样本,所以具有稀疏性,叫sp
关于拉格朗日乘子法和KKT条件
解密SVM系列(一):关于拉格朗日乘子法和KKT条件 标签: svm算法支持向量机 2015-08-17 18:53 1214人阅读 评论(0) 收藏 举报 分类: 模式识别&机器学习(42) 版权声明:本文为博主原创文章,未经博主允许不得转载. 原文链接 :http://blog.csdn.net/on2way/article/details/47729419 写在之前 支持向量机(SVM),一个神秘而众知的名字,在其出来就受到了莫大的追捧,号称最优秀的分类算法之一,以其简单的理论构造
拉格朗日乘子法和KKT条件
拉格朗日乘子法(Lagrange Multiplier)和KKT(Karush-Kuhn-Tucker)条件是求解约束优化问题的重要方法,在有等式约束时使用拉格朗日乘子法,在有不等约束时使用KKT条件.前提是:只有当目标函数为凸函数时,使用这两种方法才保证求得的是最优解. 对于无约束最优化问题,有很多经典的求解方法,参见无约束最优化方法. 拉格朗日乘子法 先来看拉格朗日乘子法是什么,再讲为什么. $\min\;f(x)\\s.t.\;h_{i}(x)=0\;\;\;\;i=1,2...,n$ 这
装载:关于拉格朗日乘子法与KKT条件
作者:@wzyer 拉格朗日乘子法无疑是最优化理论中最重要的一个方法.但是现在网上并没有很好的完整介绍整个方法的文章.我这里尝试详细介绍一下这方面的有关问题,插入自己的一些理解,希望能够对大家有帮助.本文分为两个部分:第一部分是数学上的定义以及公式上的推导:第二部分主要是一些常用方法的直观解释.初学者可以先看第二部分,但是第二部分会用到第一部分中的一些结论.请读者自行选择. 拉格朗日乘子法的数学基础 共轭函数 对于一个函数f:Rn→R(不要求是凸函数),我们可以定义它的共轭函数f⋆:Rn→R为:
机器学习笔记——拉格朗日乘子法和KKT条件
拉格朗日乘子法是一种寻找多元函数在一组约束下的极值方法,通过引入拉格朗日乘子,可将有m个变量和n个约束条件的最优化问题转化为具有m+n个变量的无约束优化问题.在介绍拉格朗日乘子法之前,先简要的介绍一些前置知识,然后就拉格朗日乘子法谈一下自己的理解. 一 前置知识 1.梯度 梯度是一个与方向导数有关的概念,它是一个向量.在二元函数的情形,设函数f(x,y)在平面区域D内具有一阶连续偏导,则对于每一点P(x0,y0)∈D,都可以定义出一个向量:fx(x0,y0)i+fy(x0,y0)j ,称该向量
KKT条件原理
问题引入 max f(x, y) s.t. g(x,y) <= 0 几何解释 a. g(x ,y) <= 0为上图中z = 0平面中的圆,圆的边表示g(x, y) = 0,圆的内部表示g(x, y) < 0. b. z = f(x, y)为上图中的曲面. 上述极值问题就是要求当点(x, y)落在圆内时(包括圆的边),f(x, y)的最大值. 1. 如果极值点在圆内,则显然有 f'(x, y) = 0 g(x, y) < 0 2. 如果极值点在圆边上,有拉格朗日乘子法
KKT条件的物理意义(转)
最好的解释:https://www.quora.com/What-is-an-intuitive-explanation-of-the-KKT-conditions# 作者:卢健龙链接:https://www.zhihu.com/question/38586401/answer/105273125来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 拉格朗日乘数法(Lagrange multiplier)有很直观的几何意义.举个2维的例子来说明:假设有自变量x和y,给定
拉格朗日乘子法以及KKT条件
拉格朗日乘子法是一种优化算法,主要用来解决约束优化问题.他的主要思想是通过引入拉格朗日乘子来将含有n个变量和k个约束条件的约束优化问题转化为含有n+k个变量的无约束优化问题. 其中,利用拉格朗日乘子法主要解决的问题为: 等式的约束条件和不等式的条件约束. 拉格朗日乘子的背后的数学意义是其为约束方程梯度线性组合中每个向量的系数. 等约束条件的解决方法不在赘述. 对于非等约束条件的求解,需要满足KKT条件才能进行求解.下面对于KKT条件进行分析. 不等式约束优化问题: 得到拉格朗日乘子法的求解方程:
关于拉格朗日乘子法与KKT条件
关于拉格朗日乘子法与KKT条件 关于拉格朗日乘子法与KKT条件 目录 拉格朗日乘子法的数学基础 共轭函数 拉格朗日函数 拉格朗日对偶函数 目标函数最优值的下界 拉格朗日对偶函数与共轭函数的联系 拉格朗日对偶问题 如何显式的表述拉格朗日对偶问题 由定义消去下确界 隐式求解约束 共轭函数法 弱对偶 强对偶 原始问题与对偶问题的关系 最优条件 互补松弛条件 KKT条件 一般问题的KKT条件 凸问题的KKT条件 KKT条件的用途 拉格朗日乘数法的形象化解读 等式约束的拉格朗日乘子法 含有不等约束的情
ML-对偶(Duality)问题 KKT 条件
Primal => Dual 现实中我们遇到的原优化问题, 写为标准型的话是这样的. \(min _w f(w) \\ s.t. \\ g_i(w) <=0 \\ h_i(w) = 0\) 即要求的是在w满足约束条件下, 且使得f(w)取得最小值的 w 的值. 那我们通常的做法是通过引入拉格朗日函数: \(L(w, \alpha, \beta) = f(w) + \sum _{i=1}^{k} \alpha_i g_i(w) + \sum _{i=1}^{t} \beta_i h_i(w)\)
热门专题
装完centos进不去win10
ganteproject按照自然日算工期
jenkins自动化测试
tomcat证书转换成nginx
cesium模型移动至某一坐标
matlab 保存为双栏eps
快速大量填写快递地址
mysql 5.7.35升级到5.37
cordova lampa 接收参数
QT 滚动条 图片缩放
C#中对EXCEL保存的SAVEAS方法说明
nfs mount 参数
ubuntu xxd安装
zbrush的Mrgb rgb M
centos6.8安装配置yum
为啥Arcgismap计算人口密度不显示数字
导入设备包ce6800启动一直#
文本相似度度量 nlp
在交换机上给vlan配置alc控制访问
Unicode数学公式