首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
L3-033 教科书般的亵渎 wp
2024-09-02
[TJOI2018]教科书般的亵渎
嘟嘟嘟 题面挺迷的,拿第一个样例说一下: 放第一次亵渎,对答案产生了\(\sum_{i = 1} ^ {10} i ^ {m + 1} - 5 ^ {m + 1}\)的贡献,第二次亵渎产生了\(\sum_{i = 1} ^ {5} i ^ {m + 1}\)的贡献. 反正我们的主要目标就是求\(f(n) = \sum _ {i = 1} ^ {n} i ^ {m + 1}\). 这东西好像叫做自然数幂和,求法很多,但我现在只会用拉格朗日差值去求. 但是我也不知道为啥,求\(m + 2\)个函数值
【BZOJ5339】[TJOI2018]教科书般的亵渎(斯特林数)
[BZOJ5339][TJOI2018]教科书般的亵渎(斯特林数) 题面 BZOJ 洛谷 题解 显然交亵渎的次数是\(m+1\). 那么这题的本质就是让你求\(\sum_{i=1}^n i^{m+1}\),中间再减掉几项直接暴力就行了. 所以只要考虑求这个东西. 比如说斯特林数? \[m^n=\sum_{i=0}^{n}{m\choose i}i!\begin{Bmatrix}n\\i\end{Bmatrix}\] 那么 \[ \begin{aligned} \sum_{i=1}^n i^m&=
洛谷 P4593 [TJOI2018]教科书般的亵渎
洛谷 P4593 [TJOI2018]教科书般的亵渎 神仙伯努利数...网上一堆关于伯努利数的东西但是没有证明,所以只好记结论了? 题目本质要求\(\sum_{i=1}^{n}i^k\) 伯努利数,\(B_0=1,B_i=-\frac{\sum_{j=0}^{i-1}C_{n+1}^jB_j}{i+1}(i>0)\) 就这玩意(什么鬼)... 然后就神仙的有\(\sum_{i=1}^{n}i^k=\frac{\sum_{i=1}^{k+1}C_{k+1}^{i}B_{k+1-i}(n+1)^{i
「TJOI 2018」教科书般的亵渎
「TJOI 2018」教科书般的亵渎 题目描述 小豆喜欢玩游戏,现在他在玩一个游戏遇到这样的场面,每个怪的血量为 \(a_i\) ,且每个怪物血量均不相同, 小豆手里有无限张"亵渎". 亵渎的效果是对所有的怪造成 \(1\) 点伤害,如果有怪死亡,则再次施放该法术.我们认为血量为 \(0\) 的怪物死亡. 小豆使用一张"亵渎"会获得一定的分数,分数计算如下,在使用一张"亵渎"之后,每一个被亵渎造成伤害的怪会产生 \(x^k\) ,其中 \(x\)
BZOJ.5339.[TJOI2018]教科书般的亵渎(拉格朗日插值) & 拉格朗日插值学习笔记
BZOJ 洛谷 题意的一点说明: \(k\)次方这个\(k\)是固定的,也就是最初需要多少张亵渎,每次不会改变: 因某个怪物死亡引发的亵渎不会计分. 不难发现当前所需的张数是空格数+1,即\(m+1\). 贡献不妨写成:\(\sum_{i=1}^ni^{m+1}-\sum_{i=1}^mA_i^{m+1}\).注意此时的\(A_i\)是剩下的空格(具体看代码最底下的暴力部分吧). 所以问题在于求\(\sum_{i=1}^ni^{m+1}\).自然数幂和有很多种求法. 这里写插值做法: \(\su
BZOJ5339:[TJOI2018]教科书般的亵渎——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=5339 https://www.luogu.org/problemnew/show/P4593 小豆喜欢玩游戏, 现在他在玩一个游戏遇到这样的场面,每个怪的血量为ai,且每个怪物血量均不相同, 小豆手里有无限张"亵渎".亵渎的效果是对所有的怪造成1点伤害,如果有怪死亡,则再次施放该法术.我们认为血量为0时怪物死亡.小豆使用一张"亵渎"会获得一定的分数,分数计算如下,在
P4593 [TJOI2018]教科书般的亵渎(拉格朗日插值)
传送门 首先所有亵渎的张数\(k=m+1\),我们考虑每一次使用亵渎,都是一堆\(i^k\)之和减去那几个没有出现过的\(j^k\),对于没有出现过的我们可以直接快速幂处理并减去,所以现在的问题就是如果求\(\sum_{i=1}^ni^k\) 据attack巨巨说,上面那个东西是一个以\(n\)为自变量的\(k+1\)次多项式,因为我们只需要单点求值,所以可以先求出\(k+2\)个值,然后就可以用拉格朗日插值来每次\(O(k)\)地求出一个值 至于这里是如何优化到\(O(k)\)的,本来拉格朗日
Luogu P4593 [TJOI2018]教科书般的亵渎
亵渎终于离开标准了,然而铺场快攻也变少了 给一个大力枚举(无任何性质)+艹出自然数幂和的方法,但是复杂度极限是\(O(k^4)\)的,不过跑的好快233 首先简单数学分析可以得出\(k=m+1\),因为每多一个空缺就会打断一张亵渎的连击 那么我们考虑对于每个空缺求出答案,发现此时所求答案必定为一段自然数幂和并且减去空缺的数字幂 发现数据范围\(m\le 50\),那么我们直接暴力求出所有连续的段,然后大力枚举这一段开始最低的怪的血量 空缺不妨暴力枚举,区间内的自然数幂和直接差分一下,那么我们只要
洛谷P4593 [TJOI2018]教科书般的亵渎
小豆喜欢玩游戏,现在他在玩一个游戏遇到这样的场面,每个怪的血量为\(a_i\),且每个怪物血量均不相同,小豆手里有无限张"亵渎".亵渎的效果是对所有的怪造成\(1\)点伤害,如果有怪死亡,则再次施放该法术.我们认为血量为\(0\)怪物死亡. 小豆使用一张 "亵渎"会获得一定的分数,分数计算如下,在使用一张"亵渎"之后,每一个被亵渎造成伤害的怪会产生\(x^k\),其中\(x\)是造成伤害前怪的血量为\(x\)和需要杀死所有怪物所需的"
并不对劲的复健训练-bzoj5339:loj2578:p4593:[TJOI2018]教科书般的亵渎
题目大意 题目链接 题解 先将\(a\)排序. \(k\)看上去等于怪的血量连续段的个数,但是要注意当存在\(a_i+1=a_{i+1}\)时,虽然它们之间的连续段为空,但是还要算上:而当\(a_m=n\)时,最后一段连续段不用算. 考虑进行游戏的过程:设当前最大血量为\(p\),正在打出第\(q\)张亵渎,那么得到的分数是:\(\sum\limits_{i=1}^p i^k-\sum\limits_{i=q}^{m}(a_i-a_{q-1})^k\). 后一部分可以直接求. 前一部分\(\su
【TJOI2018】教科书般的亵渎
题面 题目描述 小豆喜欢玩游戏,现在他在玩一个游戏遇到这样的场面,每个怪的血量为\(a_i\),且每个怪物血量均不相同,小豆手里有无限张"亵渎".亵渎的效果是对所有的怪造成11点伤害,如果有怪死亡,则再次施放该法术.我们认为血量为\(0\)怪物死亡. 小豆使用一张 "亵渎"会获得一定的分数,分数计算如下,在使用一张"亵渎"之后,每一个被亵渎造成伤害的怪会产生\(x^k\),其中\(x\)是造成伤害前怪的血量为\(x\)和需要杀死所有怪物所需的&q
洛谷P4593 [TJOI2018]教科书般的亵渎(拉格朗日插值)
题意 题目链接 Sol 打出暴力不难发现时间复杂度的瓶颈在于求\(\sum_{i = 1}^n i^k\) 老祖宗告诉我们,这东西是个\(k\)次多项式,插一插就行了 上面的是\(O(Tk^2)\)的 下面是\(O(Tk^3)\)的 // luogu-judger-enable-o2 #include<bits/stdc++.h> #define LL long long using namespace std; const int MAXN = 66, mod = 1e9 + 7; inli
洛谷 P4593 【[TJOI2018]教科书般的亵渎】
题目分析 一眼看上去就像是一个模拟题目,但是\(n\)的范围过大. 冷静分析一下发现难点在于如何快速求出幂和. 考虑使用伯努利数. \(B_0=1\) \(B_n=-\frac{1}{n+1}\sum\limits_{i=0}^{n-1}\binom{n+1}{i}* B_i\) \(\sum\limits_{i=1}^ni^k=\frac{1}{k+1}* \sum\limits_{i=1}^{k+1} \binom{k+1}{i}* B_{k-i+1}* (n+1)^i\)
[BZOJ5339] [TJOI2018]教科书般的亵渎
题目链接 BZOJ题面. 洛谷题面. Solution 随便推一推,可以发现瓶颈在求\(\sum_{i=1}^n i^k\),关于这个可以看看拉格朗日插值法. 复杂度\(O(Tm^2)\). #include<bits/stdc++.h> using namespace std; #define int long long void read(int &x) { x=0;int f=1;char ch=getchar(); for(;!isdigit(ch);ch=getchar())
洛谷P4593 [TJOI2018]教科书般的亵渎 【数学】
题目链接 洛谷P4593 题解 orz dalao upd:经典的自然数幂和,伯努利数裸题 由题我们只需模拟出代价,只需使用\(S(n,k) = \sum\limits_{i = 1}^{n} i^{k}\)这样的前缀和计算 我不知道怎么来的这样一个公式: \[(n + 1)^{k} - n^{k} = \sum\limits_{i = 1}^{k} {k \choose i}n^{k - i}\] 这玩意怎么来的呢? 左边为\((n + 1)^k - n^k\),\((n+1)^k\)可以看做
【bzoj5339】[TJOI2018]教科书般的亵渎(拉格朗日插值/第二类斯特林数)
传送门 题意: 一开始有很多怪兽,每个怪兽的血量在\(1\)到\(n\)之间且各不相同,\(n\leq 10^{13}\). 然后有\(m\)种没有出现的血量,\(m\leq 50\). 现在有个人可以使用魔法卡片,使用一张会使得所有的怪兽掉一点血,如果有怪兽死亡,则继续施展魔法. 这个人能够获得一定的分数,分数计算如下,每一次使用卡片前,假设一个怪兽血量为\(x\),那么获得\(x^k\)的分数.\(k\)为杀死所有怪兽需要的卡片数量. 求最后总的分数. 思路: 因为\(m\)很小,那么我们可
p4593 [TJOI2018]教科书般的亵渎
分析 我们发现$Ans = \sum_i \sum_j (j-p_i)^{m+1}$ 因此直接套用622f的方法即可 代码 #include<bits/stdc++.h> using namespace std; ; ; ],p[],inv[],sum[],Ans; inline int pw(int x,int tot){ ; while(tot){ )res=1ll*res*x%mod; x=1ll*x*x%mod; tot>>=; } return res; } inline
yyb省选前的一些计划
突然意识到有一些题目的计划,才可以减少大量查水表或者找题目的时间. 所以我决定这样子处理. 按照这个链接慢慢做. 当然不可能只做省选题了. 需要适时候夹杂一些其他的题目. 比如\(agc/arc/cf\)的题目,以及\(loj\)上的一些省的集训题目,还有\(uoj\)的各种\(round\)的题目. 大块大块的做题记录就在这里记录一下,省选后再来看结果,至少努力过就不曾后悔了不是吗? 首先先是省选题的记录,然后有比赛的记录,做到每周至少完成一整场\(CF\)或者\(AtCoder\)比赛的题解
解题:CF622F The Sum of the k-th Powers
题面 TJOI2018出CF原题弱化版是不是有点太过分了?对,就是 TJOI2018 教科书般的亵渎 然而我这个问题只会那个题的范围的m^3做法 回忆一下1到n求和是二次的,平方求和公式是三次的,立方求和公式是四次的,那m次方求和公式一定是个m+1次多项式 直接扔m+2个值进去把它插出来,因为是连续的可以做到线性(不算逆元) #include<cstdio> ,mod=1e9+; int n,k,ans,sum,fac[N],pre[N],suf[N]; int Qpow(int x,int
TJOI2018 简要题解
数学计算 用线段树记录之前乘过的每一个数,作除法时把原本的乘数改成111即可. 代码: #include<bits/stdc++.h> #define lc (p<<1) #define rc (p<<1|1) #define mid (T[p].l+T[p].r>>1) #define N 100005 using namespace std; int t,n; long long mod; inline long long read(){ long lo
热门专题
uniapp监听元素距离顶部高度
vscode 重写 createWebviewPanel
latex图片题注怎么输
spring不在根目录下怎么访问
GameplayAbilities的使用
rest请求地址带参数
华为交换机配置txt导入
多台服务器如何部署分布式计算
java8下载271
vim-go 代码补全
pageoffice使用教程
webtous进不去报错
C#操作QQ发送消息
iobit全套最新版永久激活码
苹果电脑安装其他软件哪里设置可以允许
前端访问了这个接口但无法debug
Linux登陆退出再登陆
python pymssql 其他电脑连不上
windows下硬盘安装ubuntu
ubuntu 使用ss