首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
LASSO和PCA先做哪个
2024-08-04
机器学习--PCA降维和Lasso算法
1.PCA降维 降维有什么作用呢?数据在低维下更容易处理.更容易使用:相关特征,特别是重要特征更能在数据中明确的显示出来:如果只有两维或者三维的话,更便于可视化展示:去除数据噪声降低算法开销 常见的降维算法有主成分分析(principal component analysis,PCA).因子分析(Factor Analysis)和独立成分分析(Independent Component Analysis,ICA),其中PCA是目前应用最为广泛的方法. 在PCA中,数据从原来的坐标系转换到新的坐标
PCA,到底在做什么
很久以前写过一篇 PCA 的小白教程,不过由于当时对 PCA 的理解流于表面,所以只是介绍了一下 PCA 的算法流程.今天在数图课上偶然听到 PCA 在图像压缩上的应用,突然明白了一点实质性的东西,这里趁热记录一波. PCA 算法 首先还是简单回顾下 PCA 的算法流程. 我们把样本数据 \(x\) 归一化后,计算其协方差矩阵 \(C_x\),然后计算 \(C_x\) 的特征向量,构造出一个特征向量矩阵 \(A\),最后把 \(x\) 通过该矩阵映射到一个新的空间,得到的向量 \(y\) 就是能
Principal Component Analysis: 用公式来描述我们想要PCA做什么
PCA要做什么? 我们想将数据从二维降到一维,那么怎么找到这条好的直线对数据进行投影呢? 上图中红色的那条直线是个不错的选择,因为点到投影到这条直线上的点之间的距离(蓝色的线)非常小;反之那条粉红色的线,数据投影到这条线上的距离非常大,所以PCA会选择红色的那条线而不是粉色的那条线. PCA要做的就是寻找一个低维的面(本例中为直线),数据投影到上面,使得这些蓝色小线段的平方和达到最小值 这些蓝色线段的长度称为投影误差(projection error) 在应用PCA之前,通常进行fe
机器学习降维方法概括, LASSO参数缩减、主成分分析PCA、小波分析、线性判别LDA、拉普拉斯映射、深度学习SparseAutoEncoder、矩阵奇异值分解SVD、LLE局部线性嵌入、Isomap等距映射
机器学习降维方法概括 版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/u014772862/article/details/52335970 最近刷题看到特征降维相关试题,发现自己了解的真是太少啦,只知道最简单的降维方法,这里列出了常见的降维方法,有些算法并没有详细推导.特征降维方法包括:Lasso,PCA,小波分析,LDA,奇异值分解SVD,拉普拉斯特征映射,SparseAutoEncoder,局部线性嵌入LLE,等距映射Isomap. 1
岭回归与Lasso回归
线性回归的一般形式 过拟合问题及其解决方法 问题:以下面一张图片展示过拟合问题 解决方法:(1):丢弃一些对我们最终预测结果影响不大的特征,具体哪些特征需要丢弃可以通过PCA算法来实现:(2):使用正则化技术,保留所有特征,但是减少特征前面的参数θ的大小,具体就是修改线性回归中的损失函数形式即可,岭回归以及Lasso回归就是这么做的. 岭回归与Lasso回归 岭回归与Lasso回归的出现是为了解决线性回归出现的过拟合以及在通过正规方程方法求解θ的过程中出现的x转置乘以x不可逆这两类问题的,这两种
主成分分析(PCA)原理总结
主成分分析(Principal components analysis,以下简称PCA)是最重要的降维方法之一.在数据压缩消除冗余和数据噪音消除等领域都有广泛的应用.一般我们提到降维最容易想到的算法就是PCA,下面我们就对PCA的原理做一个总结. 1. PCA的思想 PCA顾名思义,就是找出数据里最主要的方面,用数据里最主要的方面来代替原始数据.具体的,假如我们的数据集是n维的,共有m个数据$(x^{(1)},x^{(2)},...,x^{(m)})$.我们希望将这m个数据的维度从n维降到n'维
主成分分析(PCA)原理及R语言实现
原理: 主成分分析 - stanford 主成分分析法 - 智库 主成分分析(Principal Component Analysis)原理 主成分分析及R语言案例 - 文库 主成分分析法的原理应用及计算步骤 - 文库 主成分分析之R篇 [机器学习算法实现]主成分分析(PCA)--基于python+numpy scikit-learn中PCA的使用方法 Python 主成分分析PCA 机器学习实战-PCA主成分分析.降维(好) 关于主成分分析的五个问题 多变量统计方法,通过析取主成分显出最大的个
PCA和LDA
一.PCA 在讲PCA之前,首先有人要问了,为什么我们要使用PCA,PCA到底是干什么的?这里先做一个小小的解释,举个例子:在人脸识别工作中一张人脸图像是60*60=3600维,要处理这样的数据,计算量肯定很大,为了能降低后续计算的复杂度,节约时间,我们在处理高维数据的时候,在“预处理”阶段通常要先对原始数据进行降维,而PCA就是做的这个事.本质上讲,PCA就是讲高维的数据通过线性变换投影到低维空间上去,这个投影可不是随便投投,我们要找出最能代表原始数据的投影方法,亦即不失真,可以这么理
(六)6.6 Neurons Networks PCA
主成分分析(PCA)是一种经典的降维算法,基于基变换,数据原来位于标准坐标基下,将其投影到前k个最大特征值对应的特征向量所组成的基上,使得数据在新基各个维度有最大的方差,且在新基的各个维度上数据是不相关的,PCA有几个关键的点: 1)归一化均值与方差,均值归一化后便于计算,方差归一化后便于对各个维度进行比较 2)新基为正交基,即各个坐标轴是相互独立的(可理解为垂直),只需要取新基上取方差最大的前几个维度即可 3)PCA的前提是只对服从高斯分布的数据特征提取效果较好,这就大大限制了它的应用范围.如
初识PCA数据降维
PCA要做的事降噪和去冗余,其本质就是对角化协方差矩阵. 一.预备知识 1.1 协方差分析 对于一般的分布,直接代入E(X)之类的就可以计算出来了,但真给你一个具体数值的分布,要计算协方差矩阵,根据这个公式来计算,还真不容易反应过来.网上值得参考的资料也不多,这里用一个例子说明协方差矩阵是怎么计算出来的吧. 用matlab计算这个例子 z=[1,2;3,6;4,2;5,2] cov(z) ans = 2.9167 -0.3333 -0.3333 4.0000 可以看出,matlab计算协方差过程
Kernel PCA 原理和演示
Kernel PCA 原理和演示 主成份(Principal Component Analysis)分析是降维(Dimension Reduction)的重要手段.每一个主成分都是数据在某一个方向上的投影,在不同的方向上这些数据方差Variance的大小由其特征值(eigenvalue)决定.一般我们会选取最大的几个特征值所在的特征向量(eigenvector),这些方向上的信息丰富,一般认为包含了更多我们所感兴趣的信息.当然,这里面有较强的假设:(1)特征根的大小决定了我们感兴趣信息的多少.即
一篇深入剖析PCA的好文
主成分分析(Principal components analysis)-最大方差解释 在这一篇之前的内容是<Factor Analysis>,由于非常理论,打算学完整个课程后再写.在写这篇之前,我阅读了PCA.SVD和LDA.这几个模型相近,却都有自己的特点.本篇打算先介绍PCA,至于他们之间的关系,只能是边学边体会了.PCA以前也叫做Principal factor analysis. 1. 问题 真实的训练数据总是存在各种各样的问题: 1. 比如拿到一个汽车的样本,里面既有以"
主成分分析(PCA)原理及R语言实现 | dimension reduction降维
如果你的职业定位是数据分析师/计算生物学家,那么不懂PCA.t-SNE的原理就说不过去了吧.跑通软件没什么了不起的,网上那么多教程,copy一下就会.关键是要懂其数学原理,理解算法的假设,适合解决什么样的问题.学习可以高效,但却没有捷径,你终将为自己的思维懒惰和行为懒惰买单. 2019年04月25日 不该先说covariacne matrix协方差矩阵的,此乃后话,先从直觉理解PCA.先看一个数据实例,明显的两个维度之间有一个相关性,大部分的方差可以被斜对角的维度解释,少数的noise则被虚线解
深入学习主成分分析(PCA)算法原理(Python实现)
一:引入问题 首先看一个表格,下表是某些学生的语文,数学,物理,化学成绩统计: 首先,假设这些科目成绩不相关,也就是说某一科目考多少分与其他科目没有关系,那么如何判断三个学生的优秀程度呢?首先我们一眼就能看出来,数学,物理,化学这三门课的成绩构成了这组数据的主成分(很显然,数学作为第一主成分,因为数据成绩拉的最开). 那么为什么我们能一眼看出来呢? 当然是我们的坐标轴选对了!! 下面,我们继续看一个表格,下标是一组学生的数学,物理,化学,语文,历史,英语成绩统计: 那么这个表我们能一眼看出来吗?
PCA与KPCA
PCA是利用特征的协方差矩阵判断变量间的方差一致性,寻找出变量之间的最佳的线性组合,来代替特征,从而达到降维的目的,但从其定义和计算方式中就可以看出,这是一种线性降维的方法,如果特征之间的关系是非线性的,用线性关系去刻画他们就会显得低效,KPCA正是应此而生,KPCA利用核化的思想,将样本的空间映射到更高维度的空间,再利用这个更高的维度空间进行线性降维. 如果样本的维度是k,样本个数是n(n>k),那么首先需要将样本投射到n维空间,这个n维空间是这样计算的:首先计算n个样本间的距离矩阵D(n*n
PCA主成分分析+白化
参考链接:http://deeplearning.stanford.edu/wiki/index.php/%E4%B8%BB%E6%88%90%E5%88%86%E5%88%86%E6%9E%90 http://deeplearning.stanford.edu/wiki/index.php/%E7%99%BD%E5%8C%96 引言 主成分分析(PCA)是一种能够极大提升无监督特征学习速度的数据降维算法.更重要的是,理解PCA算法,对实现白化算法有很大的帮助,很多算法都先用白化算法作预处理步骤
PCA原理解释(二)
PCA在做数据处理,一般会有一个数据预处理,其中一个目标就是将取数据特征向相关性. 为什么要去特征的相关性? 因为数据如果有相关性,在学习的时候是冗余的,徒增学习成本:所以对于数据处理(也称之为白化,英文有的时候称之为sphering),白化的目的:1.实现特征之间的相关性较低:2.所有的特征具有相同的方差. 怎么去特征相关性,就是让他们的协方差为0,协方差,顾名思义,就是两组变量的协同性,如果两个变量的变化趋势是一致的,某个变量范围内,取值同样趋于增大.减少,这个时候,协方差就是正常,如果变化
CS229 6.6 Neurons Networks PCA主成分分析
主成分分析(PCA)是一种经典的降维算法,基于基变换,数据原来位于标准坐标基下,将其投影到前k个最大特征值对应的特征向量所组成的基上,使得数据在新基各个维度有最大的方差,且在新基的各个维度上数据是不相关的,PCA有几个关键的点: 1)归一化均值与方差,均值归一化后便于计算,方差归一化后便于对各个维度进行比较 2)新基为正交基,即各个坐标轴是相互独立的(可理解为垂直),只需要取新基上取方差最大的前几个维度即可 3)PCA的前提是只对服从高斯分布的数据特征提取效果较好,这就大大限制了它的应用范围.如
主成分分析(PCA)学习笔记
这两天学习了吴恩达老师机器学习中的主成分分析法(Principal Component Analysis, PCA),PCA是一种常用的降维方法.这里对PCA算法做一个小笔记,并利用python完成对应的练习(ps:最近公式有点多,开始没找到怎么敲公式,前面几篇都是截的图^_^,后面问了度娘,原来是支持latex的).代码和数据见github 一.PCA基本思路 将数据从原来的坐标系转换到新的坐标系,新坐标系的选择由数据本身决定.第一个新坐标轴选择的是原始数据中方差最大的方向,第二个新坐标轴选择
一个关于PCA的疑问
我们知道PCA干的事情是把n维的样本投影到k维,同时丢失的信息能够达到最少. 为什么说principal component是covariance matrix的特征值中最大的前k个对应的特征向量上的分量? 解释: 对于一组样本数据,如果它们的方差越大,说明它们蕴含的信息越多,可以参考熵的概念理解.那么PCA需要做的事情就是当投影到k维的时候,每个维度上的方差都能够越大越好.这要怎么实现呢? 需要注意的是,在样本进行投影的时候,需要对数据进行feature scaling,即,j表示第j个fea
DL四(预处理:主成分分析与白化 Preprocessing PCA and Whitening )
预处理:主成分分析与白化 Preprocessing:PCA and Whitening 一主成分分析 PCA 1.1 基本术语 主成分分析 Principal Components Analysis 白化 whitening 亮度 intensity 平均值 mean 方差 variance 协方差矩阵 covariance matrix 基 basis 幅值 magnitude 平稳性 stationarity 特征向量 eigenvector 特征值 eigenvalue 1.2 介绍 主
热门专题
mysql5.7.33压缩包安装教程
阿里巴巴java开发手册 线程池
rabitmq rpc 客户端堵塞进程
c# 取dictionary第一个
简述一下四次握手机制释放TCP连接的四个步
unity的ongui用法
beyond copmare 一致内容 顺序
CreateForm创建不是空白的窗体
cglib如何对接口生成代理类
golang 获取当前也url
webpack proxypath 配置
gridcontrol 下拉菜单
elasticsearc curl 查看mapping
欧美高清性XXXXHDvideosex
python调用libsvm
JavaScript json转换为字符串
thinkphp 找不到插件
avcodec_decode_audio4 解码后数据格式
kali update正在读取软件列表...完成
查找所有文件下面的压缩文件 linux