“LDA(Latent Dirichlet Allocation)模型,模型主要解决文档处理领域的问题,比如文章主题分类.文章检测.相似度分析.文本分段和文档检索等问题.LDA主题模型是一个三层贝叶斯概率模型,包含词.主题.文档三层结构,文档到主题服从Dirichlet分布,主题到词服从多项式分布.它采用了词袋(Bag of Words)的方法,将每一篇文章视为一个词频向量,每一篇文档代表了一些主题所构成的概率分布,而每一个主题又代表了很多单词所构成的一个概率分布.利用LDA模型对用户参与的话题
几个人排成一排,分成两队.第一个人进入一队,第二个人进入第二队,第三个人进入第一队,以此类推. 给定一个正整数的数组(人的权重),返回两个整数的新数组/元组,其中第一个是第1组的总重量,第二个是第2组的总重量.数组大小至少为1.所有数字都是正数. function rowWeights(array){ //your code here let a = 0; let b = 0; for (let i=0;i<array.length;i++) { if (i % 2 == 0) { a += a
一.认识问题: 首先我们通过下面这个 测试程序 来认识这个问题:运行的环境 (有必要说明一下,不同环境会有不同的结果):32位 Windows XP,Sun JDK 1.6.0_18, eclipse 3.4,测试程序: Java代码 import java.util.concurrent.CountDownLatch; public class TestNativeOutOfMemoryError { public static void main(String[] args) { for
gensim的LDA算法中很容易提取到每篇文章的主题分布矩阵,但是一般地还需要进一步获取每篇文章归属到哪个主题概率最大的数据,这个在检索gensim文档和网络有关文章后,发现竟然没有. 简单写了一下. #打印每篇文档最高概率主题 for i in lda.get_document_topics(corpus)[:]: listj=[] for j in i: listj.append(j[1]) bz=listj.index(max(listj)) #print(i[bz][0],i,listj