首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
lightgbm是如何支持类别特征的 知乎
2024-08-03
LightGBM,面试会问到的都在这了(附代码)!
1. LightGBM是什么东东 不久前微软DMTK(分布式机器学习工具包)团队在GitHub上开源了性能超越其他boosting工具的LightGBM,在三天之内GitHub上被star了1000次,fork了200次.知乎上有近千人关注"如何看待微软开源的LightGBM?"问题,被评价为"速度惊人","非常有启发","支持分布式","代码清晰易懂","占用内存小"等. LightG
高数量类别特征(high-cardinality categorical attributes)的预处理方法
high-cardinality categorical attributes,从字面上理解,即对于某个category特征,不同值的数量非常多,这里暂且把它叫做高数量类别属性.反之,即低数量类别属性(low-cardinality) 对于低数量类别属性,通常在data science中采用的方式是将其转化为one-hot编码,即给每一个类别增加一个特征.但是当类别数量增加的时候,ont-hot编码增加的特征也在增加.所以,one-hot编码无法适用于高数量特征属性. 基本方法(clusteri
开源|LightGBM:三天内收获GitHub 1000+ 星
原创 2017-01-05 LightGBM 微软研究院AI头条 [导读]不久前微软DMTK(分布式机器学习工具包)团队在GitHub上开源了性能超越其他boosting工具的LightGBM,在三天之内GitHub上被star了1000+次,fork了200+次.知乎上有近千人关注"如何看待微软开源的LightGBM?"问题,被评价为"速度惊人","非常有启发","支持分布式","代码清晰易懂",&quo
LightGBM原理与实践简记
写在前面: LightGBM 用了很久了,但是一直没有对其进行总结,本文从 LightGBM 的使用.原理及参数调优三个方面进行简要梳理. 目录 开箱即用 quickstart sklearn 接口 增量学习 原理 回顾Xgboost LightGBM 直方图算法 Leaf-wise 生长 类别型特征支持 并行支持 不均衡数据处理 参数调优 参数说明 核心参数 超参 调优 自动调参 特征重要性 references 开箱即用 quickstart 使用 LightGBM 官方接口,核心步骤 定义
XGBoost、LightGBM的详细对比介绍
sklearn集成方法 集成方法的目的是结合一些基于某些算法训练得到的基学习器来改进其泛化能力和鲁棒性(相对单个的基学习器而言)主流的两种做法分别是: bagging 基本思想 独立的训练一些基学习器(一般倾向于强大而复杂的模型比如完全生长的决策树),然后综合他们的预测结果,通常集成模型的效果会优于基学习器,因为模型的方差有所降低. 常见变体(按照样本采样方式的不同划分) Pasting:直接从样本集里随机抽取的到训练样本子集 Bagging:自助采样(有放回的抽样)得到训练子集 Random
工业级GBDT算法︱微软开源 的LightGBM(R包正在开发....)
看完一篇介绍文章后,第一个直觉就是这算法已经配得上工业级属性.日前看到微软已经公开了这一算法,而且已经发开python版本,本人觉得等hadoop+Spark这些平台配齐之后,就可以大规模宣传啦~如果R包一发我一定要第一时间学习并更新在本帖下~ 哈哈 看好它是因为支持分布式.GPU运算,而且占用内存小,这几个特制已经足以让她从学界走到工业界,之前的XGboosting更多的使用场景在学术.竞赛.之前我也有写过,感觉局限挺多: R语言︱XGBoost极端梯度上升以及forecastxgb(预测)+
LightGBM总结
一.LightGBM介绍 LightGBM是一个梯度Boosting框架,使用基于决策树的学习算法.它可以说是分布式的,高效的,有以下优势: 1)更快的训练效率 2)低内存使用 3)更高的准确率 4)支持并行化学习 5)可以处理大规模数据 与常见的机器学习算法对比,速度是非常快的 二.XGboost缺点 在讨论LightGBM时,不可避免的会提到XGboost,关于XGboost可以参考此博文 关于XGboost的不足之处主要有: 1)每次迭代训练时需要读取整个数据集,耗时耗内存: 2)使用Ba
LightGBM算法(转载)
原文:https://blog.csdn.net/niaolianjiulin/article/details/76584785 前者的含义是轻量级,GBM:梯度上升机. 相较于xgboost: 更快的训练效率 低内存使用 更高的准确率 支持并行化学习 可处理大规模数据 xgboost的缺点: 每轮迭代时,都需要遍历整个训练数据多次.如果把整个训练数据装进内存则会限制训练数据的大小:如果不装进内存,反复地读写训练数据又会消耗非常大的时间. 预排序方法(pre-sorted):首先,空间消耗大.这
Lightgbm 随笔
lightGBM LightGBM 是一个梯度 boosting 框架,使用基于学习算法的决策树.它可以说是分布式的,高效的,有以下优势: 更快的训练效率 低内存使用 更高的准确率 支持并行化学习 可处理大规模数据 与常用的机器学习算法进行比较:速度飞起 已有的xgboost等模型存在一些缺点,如: 每轮迭代时,都需要遍历整个训练数据多次.如果把整个训练数据装进内存则会限制训练数据的大小:如果不装进内存,反复地读写训练数据又会消耗非常大的时间. 预排序方法(pre-sorted):首先,空间消耗
LightGBM介绍及参数调优
1.LightGBM简介 LightGBM是一个梯度Boosting框架,使用基于决策树的学习算法.它可以说是分布式的,高效的,有以下优势: 1)更快的训练效率 2)低内存使用 3)更高的准确率 4)支持并行化学习 5)可以处理大规模数据 与常见的机器学习算法对比,速度是非常快的 2.XGboost的缺点 在讨论LightGBM时,不可避免的会提到XGboost,关于XGboost可以参考此博文 关于XGboost的不足之处主要有: 1)每轮迭代时,都需要遍历整个训练数据多次.如果把整个训练数据
机器学习 之LightGBM算法
目录 1.基本知识点简介 2.LightGBM轻量级提升学习方法 2.1 leaf-wise分裂策略 2.2 基于直方图的排序算法 2.3 支持类别特征和高效并行处理 1.基本知识点简介 在集成学习的Boosting提升算法中,有两大家族:第一是AdaBoost提升学习方法,另一种是GBDT梯度提升树. 传统的AdaBoost算法:利用前一轮迭代弱学习器的误差来更新训练集的权重,一轮轮迭代下去. 梯度提升树GBDT:也是通过迭代的算法,使用前向分布算法,但是其弱分类器限定了只能使用CART回归树
机器学习之 XGBoost和LightGBM
目录 1.基本知识点简介 2.梯度提升树GBDT算法 2.1 思路和原理 2.2 梯度代替残差建立CART回归树 3.XGBoost提升树算法 3.1 XGBoost原理 3.2 XGBoost中损失函数的泰勒展开 3.3 XGBoost中正则化项的选定 3.4 最终的目标损失函数及其最优解的表达形式 4.LightGBM轻量级提升学习方法 4.1 leaf-wise分裂策略 4.2 基于直方图的排序算法 4.3 支持类别特征和高效并行处理 1.基本知识点简介 在集成学习的Boosting提升算
LightGBM优势总结
效率和内存上的提升 1) 在训练决策树计算切分点的增益时,xgboost采用预排序,即需要对每个样本的切分位置都要计算一遍,所以时间复杂度是O(#data). 而LightGBM则是将样本离散化为直方图,直方图算法的基本思想是先把连续的浮点特征值离散化成k个整数,同时构造一个宽度为k的直方图.在遍历数据的时候,根据离散化后的值作为索引在直方图中累积统计量,当遍历一次数据后,直方图累积了需要的统计量,然后根据直方图的离散值,遍历寻找最优的分割点) Histogram 算法的优缺点: Histogr
xgboost gbdt特征点分烈点
lightGBM与XGBoost的区别:(来源于:http://baijiahao.baidu.com/s?id=1588002707760744935&wfr=spider&for=pc) 切分算法(切分点的选取) 占用的内存更低,只保存特征离散化后的值,而这个值一般用8位整型存储就足够了,内存消耗可以降低为原来的1/8. 降低了计算的代价:预排序算法每遍历一个特征值就需要计算一次分裂的增益,而直方图算法只需要计算k次(k可以认为是常数),时间复杂度从O(#data#feature)优化
R︱Yandex的梯度提升CatBoost 算法(官方述:超越XGBoost/lightGBM/h2o)
俄罗斯搜索巨头 Yandex 昨日宣布开源 CatBoost ,这是一种支持类别特征,基于梯度提升决策树的机器学习方法. CatBoost 是由 Yandex 的研究人员和工程师开发的,是 MatrixNet 算法的继承者,在公司内部广泛使用,用于排列任务.预测和提出建议.Yandex 称其是通用的,可应用于广泛的领域和各种各样的问题. 笔者相关文章: R+工业级GBDT︱微软开源 的LightGBM(R包已经开放) R语言︱XGBoost极端梯度上升以及forecastxgb(预测)+xgbo
比XGBOOST更快--LightGBM介绍
xgboost的出现,让数据民工们告别了传统的机器学习算法们:RF.GBM.SVM.LASSO.........现在,微软推出了一个新的boosting框架,想要挑战xgboost的江湖地位.笔者尝试了一下,下面请看来自第一线的报告. 包含以下几个部分: 一. 基本介绍 二. XGBOOST原理及缺点 三. LightGBM的优化 四. 建模过程(python) 五. 调参 一. 基本介绍 LightGBM 是一个梯度 boosting 框架,使用基于学习算法的决策树.它可以说是分布式的,高效
LightGBM详细用法--机器学习算法--周振洋
LightGBM算法总结 2018年08月21日 18:39:47 Ghost_Hzp 阅读数:2360 版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/weixin_39807102/article/details/81912566 1 LightGBM原理 1.1 GBDT和 LightGBM对比 1.2 LightGBM 的动机 1.3 Xgboost 原理 1.4 LightGBM 优化 1.4.1 Histogram 算法 1.4.2
LightGBM的算法介绍
LightGBM算法的特别之处 自从微软推出了LightGBM,其在工业界表现的越来越好,很多比赛的Top选手也掏出LightGBM上分.所以,本文介绍下LightGBM的特别之处. LightGBM算法在模型的训练速度和内存方面都有相应的优化. 基于树模型的boosting算法,很多算法比如(xgboost 的默认设置)都是用预排序(pre-sorting)算法进行特征的选择和分裂. 首先,对所有特征按数值进行预排序. 其次,在每次的样本分割时,用O(# data)的代价找到每个特征的最优分割
如何看待微软新开源的LightGBM?
GBDT虽然是个强力的模型,但却有着一个致命的缺陷,不能用类似mini batch的方式来训练,需要对数据进行无数次的遍历.如果想要速度,就需要把数据都预加载在内存中,但这样数据就会受限于内存的大小:如果想要训练更多的数据,就要使用外存版本的决策树算法.虽然外存算法也有较多优化,SSD也在普及,但在频繁的IO下,速度还是比较慢的. 为了能让GBDT高效地用上更多的数据,我们把思路转向分布式GBDT,然后就有了LightGBM.设计的思路主要是两点, 1. 单个机器在不牺牲速度的情况下,尽可能多
论文笔记:LightGBM: A Highly Efficient Gradient Boosting Decision Tree
引言 GBDT已经有了比较成熟的应用,例如XGBoost和pGBRT,但是在特征维度很高数据量很大的时候依然不够快.一个主要的原因是,对于每个特征,他们都需要遍历每一条数据,对每一个可能的分割点去计算信息增益.为了解决这个问题,本文提出了两个新技术:Gradient-based One-Side Sampling(GOSS)和Exclusive Feature Bundling(EFB). Histogram-based Algorithm 基于直方图的方法比基于预排序的方式要更加高效,这里对这
热门专题
oracle分页排序查询重复
win系统如何访问centos下的ftp
qt 怎么判断鼠标按了哪个控件
centos7.9如何安装gcc
sqlserver sum() 求和 过滤掉为null的数据
路由表LPM算法 源码
修改DataTemplate 内容显示省略
antd checkout 初始化全选
react click 禁止传递
logj日志 分段保存
cAdvisor显示容器docker自定义名称
微信小程序three.js
c# proxy代理
ubuntu去掉多余的字符集 locale
python写入sql server中文乱码
ubuntu 挂载新硬盘到 home
VS 未定义标识符string
migration内核线程
windows怎么做账.sh文件
jmeter怎么模拟tcp向网关发送请求