效率和内存上的提升 1) 在训练决策树计算切分点的增益时,xgboost采用预排序,即需要对每个样本的切分位置都要计算一遍,所以时间复杂度是O(#data). 而LightGBM则是将样本离散化为直方图,直方图算法的基本思想是先把连续的浮点特征值离散化成k个整数,同时构造一个宽度为k的直方图.在遍历数据的时候,根据离散化后的值作为索引在直方图中累积统计量,当遍历一次数据后,直方图累积了需要的统计量,然后根据直方图的离散值,遍历寻找最优的分割点) Histogram 算法的优缺点: Histogr