首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
lightgbm gpu版本
2024-09-01
lightgbm GPU版本安装
python机器学习-乳腺癌细胞挖掘(博主亲自录制视频)https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share 官网 https://lightgbm.readthedocs.io/en/latest/GPU-Windows.html lightgbm GPU版本
LightGBM GPU python版本安装
失败的安装尝试 1.官方Guide https://lightgbm.readthedocs.io/en/latest/GPU-Windows.html 生成在windows下可执行的exe程序,但是这不是我想要的,我想要的是gpu版本的python pakcage. 2. 网络教程 https://www.jianshu.com/p/30555fd2bd50 生成python gpu 版 成功的安装 3.記錄 WINDOWS 10 在ANACONDA環境下安裝 LIGHTGBM-GPU版本 h
tensorflow 一些好的blog链接和tensorflow gpu版本安装
pading :SAME,VALID 区别 http://blog.csdn.net/mao_xiao_feng/article/details/53444333 tensorflow实现的各种算法:http://www.cnblogs.com/zhizhan/p/5971423.html 卷积神经网络中w*x得到的是一个feature map,然而bias是一个值,也就是每个feature map只对应一个数值的bias(猜测feature map上面的每一个元素都+bias) tensor
【转】Ubuntu 16.04安装配置TensorFlow GPU版本
之前摸爬滚打总是各种坑,今天参考这篇文章终于解决了,甚是鸡冻\(≧▽≦)/,电脑不知道怎么的,安装不了16.04,就安装15.10再升级到16.04 requirements: Ubuntu 16.04 python 2.7 Flask tensorflow GPU 版本 安装nvidia driver 经过不断踩坑的安装,终于google到了靠谱的方法,首先检查你的NVIDIA VGA card model sudo lshw -numeric -C display 可以看到你的显卡信息,比如
Ubuntu 14.04 64bit 安装tensorflow(GPU版本)
本博客主要用于在Ubuntu14.04 64bit 操作系统上搭建google开源的深度学习框架tensorflow. 0.安装CUDA和cuDNN 如果要安装GPU版本的tensorflow,就必须先安装CUDA和cuDNN,请参考Caffe学习笔记2--Ubuntu 14.04 64bit 安装Caffe(GPU版本). 1.安装tensorflow github上下载已经编译好的.whl文件. 输入如下, sudo pip install tensorflow-0.8.0-cp27-non
Caffe学习笔记2--Ubuntu 14.04 64bit 安装Caffe(GPU版本)
0.检查配置 1. VMWare上运行的Ubuntu,并不能支持真实的GPU(除了特定版本的VMWare和特定的GPU,要求条件严格,所以我在VMWare上搭建好了Caffe环境后,又重新在Windows 7 64bit系统上安装了Ubuntu 14.04 64bit系统,链接在此,以此来搭建Caffe GPU版本): 2. 确定GPU支持CUDA 输入: lspci | grep -i nvidia 显示结果: 我的是GTX 650,然后到http://developer.nvidia.com
win10 用cmake 3.5.2 和 vs 2015 update1 编译 GPU版本(cuda 8.0, cudnn v5 for cuda 8.0)
win10 用cmake 3.5.2 和 vs 2015 update1 编译 GPU版本(cuda 8.0, cudnn v5 for cuda 8.0) 用vs 2015打开 编译Release和Debug版本 看网上那个例子里面 工程里面有是三个文件夹 include(包含mxnet,dmlc,mshadow的include目录) lib(包含libmxnet.dll, libmxnet.lib,把用vs编译好的放过去) python(包含一个mxnet,setup.py, 以及buil
安装GPU版本的tensorflow填过的那些坑!---CUDA说再见!
那些坑,那些说不出的痛! --------回首安装的过程,真的是填了一个坑又出现了一坑的感觉.记录下了算是自己的笔记也能给需要的人提供一点帮助. 1 写在前面的话 其实在装GPU版本的tensorflow最难的地方就是装CUDA的驱动.踩过一些坑之后,终于明白为什么Linus Torvald 对英伟达有那么多的吐槽了.我的安装环境是ubuntu16.04,安装的是CUDA-8.0.其他驱动安装一般不会遇到很大的问题,都是一些小问题,一般不会卡很久.可以参考官网的安装过程. 2 眼花缭乱的CUDA
Ubuntu 16安装GPU版本tensorflow
pre { direction: ltr; color: rgb(0, 0, 0) } pre.western { font-family: "Liberation Mono", "Courier New", monospace } pre.cjk { font-family: "Nimbus Mono L", "Courier New", monospace } pre.ctl { font-family: "Li
win10系统下安装TensorFlow GPU版本
首先要说,官网上的指南是最好的指南. https://www.tensorflow.org/install/install_windows 需要FQ看. 想要安装gpu版本的TensorFlow.我们需要安装 Cuda 和Cudnn 需要注意的是,他们的版本极其重要 cuda必须是8.0的,不能是最新版的9.0 cudnn必须是v6.0,不能使v5.1或v7.0 TensorFlow需要是1.3版本的 cuda可以从官网下载 https://developer.nvidia.com/cuda-d
TensorFlow在Windows上的CPU版本和GPU版本的安装指南(亲测有效)
安装说明 平台:Window.Ubuntu.Mac等操作系统 版本:支持GPU版本和CPU版本 安装方式:pip方式.Anaconda方式 attention: 在Windows上目前支持python3.5.x GPU版本可支持CUDA9.0.Cudnn7.0 安装过程 CUDA简介 CUDA(Compute Unified Device Architecture),是显卡厂商NVIDIA推出的运算平台. CUDA™是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题
学习笔记TF046:TensoFlow开发环境,Mac、Ubuntu/Linux、Windows,CPU版本、GPU版本
下载TensorFlow https://github.com/tensorflow/tensorflow/tree/v1.1.0 .Tags选择版本,下载解压. pip安装.pip,Python包管理工具,PyPI(Python Packet Index) https://pypi.python.org/pypi . Mac环境.安装virtualenv.virtualenv,Python沙箱工具,创建独立Python环境.pip install virtralenv --upgrade 安装
通过Anaconda在Ubuntu16.04上安装 TensorFlow(GPU版本)
一. 安装环境 Ubuntu16.04.3 LST GPU: GeForce GTX1070 Python: 3.5 CUDA Toolkit 8.0 GA1 (Sept 2016) cuDNN v6.0 Library for Linux TensorFlow版本: Linux GPU: Python 3.5 (build history) 版本之间要匹配,否则安装可能会出错. 二.软件下载: 1.Ubuntu16.04.3 LST 下载地址:https://www.ubuntu.com/d
Win10上安装Keras 和 TensorFlow(GPU版本)
一. 安装环境 Windows 10 64bit 家庭版 GPU: GeForce GTX1070 Python: 3.5 CUDA: CUDA Toolkit 8.0 GA1 (Sept 2016) cuDNN: cuDNN v6.0 Library for Windows 10 [注意] (1)这里值得一提的是,Python,CUDA,cuDNN之间的版本要严格匹配,不匹配安装会出错. (2)后来博主的系统升级到了Windows 10 64bit 企业版,按照上面的软件配置安装,结果出错
windows下caffe GPU版本配置
由于项目需要,所以在自己本子上配置了一下windows下GPU版本的caffe; 硬件: win10 ; gtx1070独显(计算能力6.1): 安装软件: cudnn-8.0-windows10-x64-v5.1 : cuda_8.0.61_win10 : NugetPackages.zip : caffe-master: 可以自己官网下载(我也提供了百度云:链接:https://pan.baidu.com/s/1miDu1qo 密码:w7ja) 参考链接
faiss CPU版本+GPU版本安装
faiss安装 faiss是facebook开发的有CPU版本和GPU版本的求密集向量相似性和进行密集向量聚类的库. faiss用c++编写,安装faiss需要在github上下载其c++源码并用make编译安装 faiss仅有的两个依赖包:blas和lapack CPU 方面,Facebook 大量利用了: 多线程以充分利用多核性能并在多路 GPU 上进行并行搜索. BLAS 算法库通过 matrix/matrix 乘法进行高效.精确的距离计算.没有 BLAS,高效的强力执行很难达到最优状态.
windows10安装tensorflow的gpu版本(pip3安装方式)
前言: TensorFlow 有cpu和 gpu两个版本:gpu版本需要英伟达CUDA 和 cuDNN 的支持,cpu版本不需要:本文主要安装gpu版本. 1.环境 gpu:确认你的显卡支持 CUDA,这里确认. vs2015运行时库:下载64位的,这里下载,下载后安装. python 3.6/3.5:下载64位的,这里下载,下载后安装. pip 9.0.1(确认pip版本 >= 8.1,用pip -V 查看当前 pip 版本,用python -m pip install -U pip升级pip
ubuntu安装mxnet GPU版本
安装mxnet GPUsudo pip install mxnet-cu80==1.1.0 推荐pip安装mxnet,土豪gpu版本: pip install mxnet-cu90==1.0.0 豪华至尊gpu+mkl版本 pip install mxnet-cu90mkl==1.0.0 (1)使用系统python验证,命令行中输入:python 1,cpu: from mxnet import ndx = nd.array([1,2,3])x.contextcpu(0) 2,GPU from
Ubuntu16安装GPU版本TensorFlow(个人笔记本电脑)
想着开始学习tf了怎么能不用GPU,网上查了一下发现GeForce GTX确实支持GPU运算,所以就尝试部署了一下,在这里记录一下,避免大家少走弯路. 使用个人笔记本电脑thinkpadE570,内存4G,显卡GeForce GTX 950M 前期电脑已经安装win0+Ubuntu16双系统,thinkpad安装win0+Ubuntu16配置参照这里(本人为了方便) 安装顺序为: (1)安装NVIDIA Driver 安装电脑对应的显卡驱动,安装完成能够在程序中找到NVIDIA.和windows
tensorflow 安装GPU版本,个人总结,步骤比较详细【转】
本文转载自:https://blog.csdn.net/gangeqian2/article/details/79358543 手把手教你windows安装tensorflow的教程参考另一篇博文http://mp.blog.csdn.net/postedit/79307696 此博文是在上文安装CUDA/cuDNN的基础上的个人填坑总结,欢迎指教. CUDA CUDA(Compute Unified Device Architecture),是显卡厂商NVIDIA推出的运算平台. CUDA™是
热门专题
SQLdeclare声明本地变量
pg_dump如何带密码
el-table-column循环时加if
rpm 安装到指定路径
springboot配置上传文件的临时路径,报错文件不存在
语言程序设计基础第二版答案
等待事件 PX Deq
github中搜索敏感信息
dotnetcore 调试与发布多环境部署
wps 按照一列汇总 其他列求和
uni-app eslint 为什么没在运行中输出
pthread版本不一致 编译
java获取复杂json对象的数据
关闭nginx根目录访问
springboot redis存储list
telnet不通的原因
桌面游戏在控制面板找不到
Cmake 判断是msvc编译器
onclick 冒泡
vm vare锁定文件失败