首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
linux 内存不足 自动 kill机制
2024-08-27
Linux OOM-killer 内存不足时kill高内存进程的策略
OOM_killer是Linux自我保护的方式,当内存不足时不至于出现太严重问题,有点壮士断腕的意味 在kernel 2.6,内存不足将唤醒oom_killer,挑出/proc/<pid>/oom_score最大者并将之kill掉 为了保护重要进程不被oom-killer掉,我们可以:echo -17 > /proc/<pid>/oom_adj,-17表示禁用OOM 我们也可以对把整个系统的OOM给禁用掉: sysctl -w vm.panic_on_oom=1 (默认为
Linux内存管理3---分页机制
1.前言 本文所述关于内存管理的系列文章主要是对陈莉君老师所讲述的内存管理知识讲座的整理. 本讲座主要分三个主题展开对内存管理进行讲解:内存管理的硬件基础.虚拟地址空间的管理.物理地址空间的管理. 本文将主要以X86架构为例来介绍Linux内存管理的分页机制. 2.分页机制 页(Page) 将线性地址空间划分成若干大小相等的片,称为页 页框(Page Frame) 物理地址空间划分成与页大小相等的若干存储块,称为页框 图 线性地址空间与物理地址空间的映射 上图说明线性地址空间是连续的(如程序经过
Linux内存寻址之分页机制
在上一篇文章Linux内存寻址之分段机制中,我们了解逻辑地址通过分段机制转换为线性地址的过程.下面,我们就来看看更加重要和复杂的分页机制. 分页机制在段机制之后进行,以完成线性—物理地址的转换过程.段机制把逻辑地址转换为线性地址,分页机制进一步把该线性地址再转换为物理地址. 硬件中的分页 分页机制由CR0中的PG位启用.如PG=1,启用分页机制,并使用本节要描述的机制,把线性地址转换为物理地址.如PG=0,禁用分页机制,直接把段机制产生的线性地址当作物理地址使用.分页机制管理的对象是固定大小的存
Linux内存寻址之分段机制及分页机制【转】
前言 本文涉及的硬件平台是X86,如果是其他平台的话,如ARM,是会使用到MMU,但是没有使用到分段机制: 最近在学习Linux内核,读到<深入理解Linux内核>的内存寻址一章.原本以为自己对分段分页机制已经理解了,结果发现其实是一知半解.于是,查找了很多资料,最终理顺了内存寻址的知识.现在把我的理解记录下来,希望对内核学习者有一定帮助,也希望大家指出错误之处. 分段到底是怎么回事 相信学过操作系统课程的人都知道分段分页,但是奇怪的是书上基本没提分段分页是怎么产生的,这就导致我们知其然不知其
Linux内存寻址之分段机制
前言 最近在学习Linux内核,读到<深入理解Linux内核>的内存寻址一章.原本以为自己对分段分页机制已经理解了,结果发现其实是一知半解.于是,查找了很多资料,最终理顺了内存寻址的知识.现在把我的理解记录下来,希望对内核学习者有一定帮助,也希望大家指出错误之处. 分段到底是怎么回事 相信学过操作系统课程的人都知道分段分页,但是奇怪的是书上基本没提分段分页是怎么产生的,这就导致我们知其然不知其所以然.下面我们先扒一下分段机制产生的历史. 实模式的诞生(16位处理器及寻址) 在8086处理器诞生
[转帖]Linux分页机制之概述--Linux内存管理(六)
Linux分页机制之概述--Linux内存管理(六) 2016年09月01日 19:46:08 JeanCheng 阅读数:5491 标签: linuxkernel内存管理分页架构更多 个人分类: ┈┈[理解Linux内存管理] https://blog.csdn.net/gatieme/article/details/52402861 全系列 非常好 就是自己学习不会.. 版权声明:本文为博主原创文章 && 转载请著名出处 @ http://blog.csdn.net/gati
Linux内存管理2---段机制
1.前言 本文所述关于内存管理的系列文章主要是对陈莉君老师所讲述的内存管理知识讲座的整理. 本讲座主要分三个主题展开对内存管理进行讲解:内存管理的硬件基础.虚拟地址空间的管理.物理地址空间的管理. 本文将主要以X86架构为例来介绍Linux内存管理的段机制. 2.段机制 段是虚拟地址空间的基本单位 段机制必须把虚拟地址空间的一个地址转换为线性地址空间的一个线性地址 段描述符 段的基地址(Base):在线性地址空间中段的起始地址: 段的界限(Limit):在虚拟地址空间中,段内可以使用的最大偏移量
浅谈Linux内存管理机制
经常遇到一些刚接触Linux的新手会问内存占用怎么那么多?在Linux中经常发现空闲内存很少,似乎所有的内存都被系统占用了,表面感觉是内存不够用了,其实不然.这是Linux内存管理的一个优秀特性,在这方 面,区别于Windows的内存管理.主要特点是,无论物理内存有多大,Linux 都将其充份利用,将一些程序调用过的硬盘数据读入内存,利用内存读写的高速特性来提高Linux系统的数据访问性能.而Windows是只在需要内存时, 才为应用程序分配内存,并不能充分利用大容量的内存空间.换句话说,每增加
了解linux内存管理机制(转)
今天了解了下linux内存管理机制,在这里记录下,原文在这里http://ixdba.blog.51cto.com/2895551/541355 根据自己的理解画了张图: 下面是转载的内容: 一 物理内存和虚拟内存 我们知道,直接从物理内存读写数据要比从硬盘读写数据要快的多,因此,我们希望所有数据的读取和写入都在内存完成,而内存是有限的,这样就引出了物理内存与虚拟内存的概念.物理内存就是系统硬件提供的内存大小,是真正的内存,相对于物理内存,在linux下还有一个虚拟内存的概念,
linux内存管理机制
物理内存和虚拟内存 我们知道,直接从物理内存读写数据要比从硬盘读写数据要快的多,因此,我们希望所有数据的读取和写入都在内存完成,而内存是有限的,这样就引出了物理内存与虚拟内存的概念. 物理内存就是系统硬件提供的内存大小,是真正的内存,相对于物理内存,在linux下还有一个虚拟内存的概念,虚拟内存就是为了满足物理内存的不足而提出的策略,它是利用磁盘空间虚拟出的一块逻辑内存,用作虚拟内存的磁盘空间被称为交换空间(Swap Space). 作为物理内存的扩展,linux会在物理内存不
linux内存分配机制
这几天在观察apache使用内存情况,所以特意了解了下linux的内存机制,发现一篇写得还不错.转来看看. 一般来说在ps aux中看到的rss就是进程所占用的物理内存.但是如果将所有程序的rss加起来的话.会发现比实际的内存还要大很多,这个是由于rss还包括了共享的部分.这个可以通过pmap -d PID来看到具体情况. 一. 内存使用说明 Free 命令相对于top 提供了更简洁的查看系统内存使用情况: 1 [root@rac1 ~]# free 2 total used
Linux 内存机制详解宝典
Linux 内存机制详解宝典 在linux的内存分配机制中,优先使用物理内存,当物理内存还有空闲时(还够用),不会释放其占用内存,就算占用内存的程序已经被关闭了,该程序所占用的内存用来做缓存使用,对于开启过的程序.或是读取刚存取过得数据会比较快. 一. 我们先来查看一个内存使用的例子: [oracle@db1 ~]$ free -m total used free shared buffers cached Mem: 72433
Linux内存机制以及手动释放swap和内存
今天我们来谈谈Linux的内存机制. 首先我们理一下概念 一.什么是linux的内存机制? 我们知道,直接从物理内存读写数据要比从硬盘读写数据要快的多,因此,我们希望所有数据的读取和写入都在内存完成,而内存是有限的,这样就引出了物理内存与虚拟内存的概念.物理内存就是系统硬件提供的内存大小,是真正的内存,相对于物理内存,在linux下还有一个虚拟内存的概念,虚拟内存就是为了满足物理内存的不足而提出的策略,它是利用磁盘空间虚拟出的一块逻辑内存,用作虚拟内存的磁盘空间被称为交换空间(Swap Spac
Linux分页机制之分页机制的演变--Linux内存管理(七)
1 页式管理 1.1 分段机制存在的问题 分段,是指将程序所需要的内存空间大小的虚拟空间,通过映射机制映射到某个物理地址空间(映射的操作由硬件完成).分段映射机制解决了之前操作系统存在的两个问题: 地址空间没有隔离 程序运行的地址不确定 不过分段方法存在一个严重的问题:内存的使用效率低. 分段的内存映射单位是整个程序:如果内存不足,被换入换出到磁盘的空间都是整个程序的所需空间,这会造成大量的磁盘访问操作,并且严重降低了运行速度. 事实上,很多时候程序运行所需要的数据只是很小的一部分,加入到内存的
[转帖]Linux分页机制之分页机制的演变--Linux内存管理(七)
Linux分页机制之分页机制的演变--Linux内存管理(七) 2016年09月01日 20:01:31 JeanCheng 阅读数:4543 https://blog.csdn.net/gatieme/article/details/52402967 ~ 版权声明:本文为博主原创文章 && 转载请著名出处 @ http://blog.csdn.net/gatieme https://blog.csdn.net/gatieme/article/details/52402967 日期 内
【转载】Linux 内存管理机制
在Linux中经常发现空闲内存很少,似乎所有的内存都被系统占用了,表面感觉是内存不够用了,其实不然.这是Linux内存管理的一个优秀特性,主要特点是,无论物理内存有多大,Linux 都将其充份利用,将一些程序调用过的硬盘数据读入内存(buffer/cache),利用内存读写的高速特性来提高Linux系统的数据访问性能.在这方面,区别于Windows的内存管理.本文从Linux的内存管理机制入手,简单介绍linux如何使用内存.监控内存,linux与windows内存管理上的区别简介,linux内
Linux 内存机制【转载】
原文地址:http://blog.csdn.net/tianlesoftware/article/details/5463790 一. 内存使用说明 Free 命令相对于top 提供了更简洁的查看系统内存使用情况: [root@rac1 ~]# free total used free shared buffers cached Mem: 1035108 1008984 26124 0 124212
Linux内存管理Swap和Buffer Cache机制
Linux内存管理Swap和Buffer Cache机制 一个完整的Linux系统主要有存储管理,内存管理,文件系统和进程管理等几方面组成,贴出一些以前学习过的一个很好的文章.与大家共享!以下主要说明Swap和Buffer Cache机制. Linux支持虚拟内存(virtual memory),虚拟内存是指使用磁盘当作RAM的扩展,这样可用的内存的大小就相应地增大了.内核会将暂时不用的内存块的内容写到硬盘上,这样一来,这块内存就可用于其它目的.当需要用到原始的内容时,它们被重新读入内存.这些操
Linux内存管理机制简析
Linux内存管理机制简析 本文对Linux内存管理机制做一个简单的分析,试图让你快速理解Linux一些内存管理的概念并有效的利用一些管理方法. NUMA Linux 2.6开始支持NUMA( Non-Uniform Memory Access )内存管理模式.在多个CPU的系统中,内存按CPU划分为不同的Node,每个CPU挂一个Node,其访问本地Node比访问其他CPU上的Node速度要快很多. 通过numactl -H查看NUMA硬件信息,可以看到2个node的大小和对应的CPU核,以及
Linux -- 内存控制之oom killer机制及代码分析
近期,线上一些内存占用比較敏感的应用.在訪问峰值的时候,偶尔会被kill掉,导致服务重新启动.发现是Linux的out-of-memory kiiler的机制触发的. http://linux-mm.org/OOM_Killer oom kiiler会在内存紧张的时候,会依次kill内存占用较高的进程,发送Signal 15(SIGTERM).并在/var/log/message中进行记录.里面会记录一些如pid,process name.cpu mask,trace等信息,通过监控能够发现类似
【转载】浅谈Linux内存管理机制
经常遇到一些刚接触Linux的新手会问内存占用怎么那么多? 在Linux中经常发现空闲内存很少,似乎所有的内存都被系统占用了,表面感觉是内存不够用了,其实不然.这是Linux内存管理的一个优秀特性,在这方 面,区别于Windows的内存管理.主要特点是,无论物理内存有多大,Linux 都将其充份利用,将一些程序调用过的硬盘数据读入内存,利用内存读写的高速特性来提高Linux系统的数据访问性能.而Windows是只在需要内存时, 才为应用程序分配内存,并不能充分利用大容量的内存空间.换句话说,每增
热门专题
圆css 在不同手机
layui open打开页面获取title
git提交代码冲突之后步骤
wsl2安装 pytorch
xcode bundle 头文件导出
vue注入目录下所有组件
qt button鼠标放上去
cenot7利用虚拟的网卡进行通信
pivort_table里的aggfunc()
arange和linspace
curl登录后获取token
服务器I/O100%
分块渲染 dirty region
实体类不存在表中 @Column 如果使用
kali设置全局代理
handlerRemoved 触发
web前端开发工作流
eclipse一直构建工作空间
ubunte点vscode没反应
java找不到或无法加载主类 Test