首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
linux 显存清理
2024-10-22
Linux显存占用无进程清理方法(附批量清理命令)
在跑TensorFlow.pytorch之类的需要CUDA的程序时,强行Kill掉进程后发现显存仍然占用,这时候可以使用如下命令查看到top或者ps中看不到的进程,之后再kill掉: fuser -v /dev/nvidia* 批量清理显卡中残留进程: sudo fuser -v /dev/nvidia* |awk '{for(i=1;i<=NF;i++)print "kill -9 " $i;}' | sudo sh
【原创】Linux环境下的图形系统和AMD R600显卡编程(4)——AMD显卡显存管理机制
显卡使用的内存分为两部分,一部分是显卡自带的显存称为VRAM内存,另外一部分是系统主存称为GTT内存(graphics translation table和后面的GART含义相同,都是指显卡的页表,GTT 内存可以就理解为需要建立GPU页表的显存).在嵌入式系统或者集成显卡上,显卡通常是不自带显存的,而是完全使用系统内存.通常显卡上的显存访存速度数倍于系统内存,因而许多数据如果是放在显卡自带显存上,其速度将明显高于使用系统内存的情况(比如纹理,OpenGL中分普通纹理和常驻纹理). 某些内容是必
ubuntu服务器常见使用技巧及-kill掉后GPU显存不释放进程-
如何解决python进程被kill掉后GPU显存不释放的问题 1 重新开一个shell,然后输入: ps aux|grep user_name|grep python.所有该用户下的python程序就会显示出来(很多在用watch命令都不会显示的进程在这里可以看到): 2 然后再一个个用kill命令清理 两台Linux系统之间传输文件的几种方法 连接服务器shell窗口关闭导致程序中断,让程序在linux后台运行nohup - CUDA_VISIBLE_DEVICES=1 nohup pytho
关于python中显存回收的问题
技术背景 笔者在执行一个Jax的任务中,又发现了一个奇怪的问题,就是明明只分配了很小的矩阵空间,但是在多次的任务执行之后,显存突然就爆了.而且此时已经按照Jax的官方说明配置了XLA_PYTHON_CLIENT_PREALLOCATE这个参数为false,也就是不进行显存的预分配(默认会分配90%的显存空间以供使用).然后在网上找到了一些类似的问题,比如参考链接中的1.2.3.4,都是在一些操作后发现未释放显存,这里提供一个实例问题和处理的思路,如果有更好的方案欢迎大家在评论区留言. 问题复现
自制操作系统Antz(3)——进入保护模式 (中) 直接操作显存
Antz系统更新地址: https://www.cnblogs.com/LexMoon/category/1262287.html Linux内核源码分析地址:https://www.cnblogs.com/LexMoon/category/1267413.html 目前已经完成了MBR的雏形,虽然有些简陋,比如我们的屏幕显示还是使用的BIOS中断,而在BIOS中断向量表只有在实模式下存在, 我们要进入保护模式之后就无法使用了.此次我们要完成直接操作显存来进行屏幕显示. 0. 关于显存 如果要
6G显卡显存不足出现CUDA Error:out of memory解决办法
从6月初开始,6G显存的显卡开始出现CUDA Error:out of memory的问题,这是因为dag文件一直在增加,不过要增加到6G还需要最少两年的时间. 现在出现问题的原因是1.内核太古老,2.驱动太古老. 编辑 解决办法,1.更新最新内核 2.更新512.15版显卡驱动,但不要更新最新版,最新版对LHR显卡进行了限制. 最新内核和512.15版本显卡点此下载:内核链接 2021年下半年,NVIDIA发布了LHR版本显卡,对显卡算力进行了限制. 2022年5月,NBminer在最新
分页型Memory LCD显存管理与emWin移植
上一篇随笔整理了一下逐行扫描型Memory LCD的显存管理与emWin移植,这篇就整理一下分页型Memory LCD显存管理与emWin移植. //此处以SSD1306作为实例 //OLED的显存//存放格式如下.//[0]0 1 2 3 ... 127 //[1]0 1 2 3 ... 127 //[2]0 1 2 3 ... 127 //[3]0 1 2 3 ... 127 //[4]0 1 2 3 ... 127 //[5]0 1 2 3 ... 127
逐行扫描型Memory LCD显存管理与emWin移植
因为Memory LCD 的特性,不能设置像素坐标,只能用缓存整体刷新. 所以对于Memory LCD来说,emWin移植仅与打点函数有关,这里用Sharp Memory LCD(ls013b7dh03)作为实例. //LCD的显存,逐行扫描//存放格式如下.//[0]0 1 2 3 ... 16 //[1]0 1 2 3 ... 16 //[2]0 1 2 3 ... 16 //[3]0 1 2 3 ... 16 //[4]0 1 2 3 ... 16 //[5]
Cpu Gpu 内存 显存 数据流
[精]从CPU架构和技术的演变看GPU未来发展 http://www.pcpop.com/doc/0/521/521832_all.shtml 显存与纹理内存详解 http://blog.csdn.net/pizi0475/article/details/8739557 GPU 与CPU的作用协调,工作流程.GPU整合到CPU得好处 http://blog.csdn.net/maopig/article/details/6803141 双剑合璧:CPU+GPU异构计算完全解析 http://bj
OpenGL8-直接分配显存-极速绘制(2)
视频教程请关注 http://edu.csdn.net/lecturer/lecturer_detail?lecturer_id=440/*** OpenGL8-直接分配显存-极速绘制(Opengl1.5版本才有)例子中展示了如何直接 分配显存,使用了glBindBuffer(GL_ARRAY_BUFFER_ARB, _vertexBufer)这个例 子中同样适用该函数分配显卡缓冲区,只是参数有所变化,传递的参数如下所示 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER_
OpenGL8-直接分配显存-极速绘制(Opengl1.5版本才有)
视频教程请关注 http://edu.csdn.net/lecturer/lecturer_detail?lecturer_id=440 /** * 这个例子介绍如何使用显卡内存进行绘制 下载地址 :http://files.cnblogs.com/zhanglitong/Tutorial8-%E7%9B%B4%E6%8E%A5%E5%88%86%E9%85%8D%E6%98%BE%E5%AD%98.rar 这里使用显卡缓冲区绘制,而不是使用内存缓冲区进行绘制 可以减少数据从内存传递到显存的过程
linux磁盘清理方法 Linux 下垃圾清理工具 BleachBit
由于当初安装系统设计不合理,有些分区的过小,以及网络通讯故障等造成日志文件速度增长等其他原因都可以表现为磁盘空间满,造成无法读写磁盘,应用程序无法执行等.下面就给你支几招(以/home空间满为例): .定期对重要文件系统扫描,并作对比,分析那些文件经常读写 #IS-IR/home>;files.txt #diff filesold.txt files.txt 通过分析预测空间的增长情况,同时可以考虑对不经常读写文件进行压缩,以减少占用空间. .查看空间文件系统的inodes消耗 #df-i/ho
Nvidia显卡怎样查看显存大小及硬件相关信息
在电脑上安装Nvidia显卡驱动,平时也会通过Nvidia控制面板来查看显示显存位宽及宽带.显示显存容量和显示显存芯片信息等等,那么该如何查看Nvidia显存大小以及Nvidia硬件相关信息呢? 1.安装上独立显卡驱动之后,在桌面空白空鼠标右键点击,nvidia控制面板,如图: 2.左下角系统属性即可查看机器的独立显卡显存,如图: 3.之后即可看到显卡显存位宽等情况. 如果用户想要查看到Nvidia显卡显存相关硬件信息的话,可以按照教程的简单步骤进行查看.
gpu显存(全局内存)在使用时数据对齐的问题
全局存储器,即普通的显存,整个网格中的随意线程都能读写全局存储器的任何位置. 存取延时为400-600 clock cycles 很easy成为性能瓶颈. 訪问显存时,读取和存储必须对齐,宽度为4Byte.假设没有正确的对齐,读写将被编译器拆分为多次操作,减少訪存性能. 多个warp的读写操作假设可以满足合并訪问,则多次訪存操作会被合并成一次完毕.合并訪问的条件,1.0和1.1的设备要求较严格,1.2及更高能力的设备上放宽了合并訪问的条件. 1.2及其更高能力的设备支持对8 bit.16 bi
[自制操作系统] 图形界面&VBE工具&MMIO显存&图形库/字库
本文记录了在JOS(或在任意OS)上实现图形界面的方法与一些图形库的实现. 本文中支持的新特性: 支持基本图形显示 支持中英文显示(中英文点阵字库) 相关:VBE VESA MMIO 点阵字库 Github : https://github.com/He11oLiu/JOS About VESA Video Electronics Standards Association(视频电子标准协会,简称"VESA")是制定计算机和小型工作站视频设备标准的国际组织,1989年由NEC及其他8家
[置顶] 基于FPGA的VGA简易显存设计&NIOS ii软核接入
项目简介 本项目基于Altera公司的Cyclone IV型芯片,利用NIOS II软核,2-port RAM与时序控制模块,实现64*48分辨率的显存(再大的显存板载资源m9k不够用) 实现效果如下: VGA时序控制模块 VGA时序简介 网络上针对VGA时序的讲解已经非常多了,简单的理解,VGA主要有H_sync和V_sync这两个坐标同步信号,与RGB这三个色彩信号.当H_sync与V_sync达到特定的值的时候,对应一个特别的坐标(x,y)上的颜色为RGB.VGA上的RGB信号是模拟信号,
(原)tensorflow中使用指定的GPU及GPU显存
转载请注明出处: http://www.cnblogs.com/darkknightzh/p/6591923.html 参考网址: http://stackoverflow.com/questions/36668467/change-default-gpu-in-tensorflow http://stackoverflow.com/questions/37893755/tensorflow-set-cuda-visible-devices-within-jupyter 1 终端执行程序时设置使
(原)tensorflow中函数执行完毕,显存不自动释放
转载请注明出处: http://www.cnblogs.com/darkknightzh/p/7608916.html 参考网址: https://stackoverflow.com/questions/39758094/clearing-tensorflow-gpu-memory-after-model-execution https://github.com/tensorflow/tensorflow/issues/1727#issuecomment-285815312s tensorflo
GPU 显存释放
我们在使用tensorflow 的时候, 有时候会在控制台终止掉正在运行的程序,但是有时候程序已经结束了,nvidia-smi也看到没有程序了,但是GPU的内存并没有释放,那么怎么解决该问题呢? 首先执行下面的命令: fuser -v /dev/nvidia* #查找占用GPU资源的PID 因为我们只有一块显卡,所以显示如下图所示: 可以看到我们的nvidia0上还有一个python 2.7的PID 然后我们执行: kill -9 pid 然后再执行nvidia-smi就可以看到内存已经被释放
【Tensorflow】设置显存自适应,显存比例
用惯了theano.再用tensoflow发现一运行显存就满载了,吓得我吃了一个苹果. 用天朝搜索引擎毛都搜不到,于是FQ找了下问题的解决方法,原来有两种 按比例 config = tf.ConfigProto() config.gpu_options.per_process_gpu_memory_fraction = 0.4 session = tf.Session(config=config, ...) 按需求增长(theano那种) config = tf.ConfigProto() co
热门专题
sqlalchemy join 空
请求url 加时间戳的目的
vue video 路径变量
修改rpcbind监听IP
uni-app 取缓存和取vuex区别
imac 安装ubuntu
有0x00 格式化截断
apt update权限不够kali
Layui使用 jqurey autocomplete用法
python虚拟环境对依赖包要明确版本号码
唯一的一个元素指定样式
layui 处理请求一场处理
hbase-site.xml配置文件
UCenter 中的应用
administrative tools文件夹没东西
minio集群使用nginx代理
cefclient.exe 参数
netstartmysql服务名无效
ios 字典转json串
迅雷的.ts是什么文件