Logistic回归是机器学习中非常经典的一个方法,主要用于解决二分类问题,它是多分类问题softmax的基础,而softmax在深度学习中的网络后端做为常用的分类器,接下来我们将从原理和实现来阐述该算法的思想. 1.原理 a.问题描述 考虑二分类问题,利用回归的思想,拟合特征向量到类别标签的回归,从而将分类问题转化为回归问题,通常通过引入Logistic平滑函数实现. 假设已知训练样本集\(D\)的\(n\)个样本\(\{(x_{i},t_{i})| i=1,...,n\}\) ,其中\(t_