multi lstm attention时序之间,inputs维度是1024,加上attention之后维度是2018,输出1024,时序之间下次再转成2048的inputs 但是如果使用multi lstm的话inputs维度是1024,加上attention之后维度是2018,输出1024,这个时候直接循环进入下一个lstm,不会加入attention,会导致input是1024,使用上一个cell的参数的话报错
使用IMDB情绪数据来比较CNN和RNN两种方法,预处理与上节相同 from __future__ import print_function import numpy as np import pandas as pd from keras.preprocessing import sequence from keras.models import Sequential from keras.layers import Dense,Dropout,Embedding,LSTM,Bidirect
#基于IMDB数据集的简单文本分类任务 #一层embedding层+一层lstm层+一层全连接层 #基于Keras 2.1.1 Tensorflow 1.4.0 代码: '''Trains an LSTM model on the IMDB sentiment classification task. The dataset is actually too small for LSTM to be of any advantage compared to simpler, much faster
国外的文献汇总: <Network Traffic Classification via Neural Networks>使用的是全连接网络,传统机器学习特征工程的技术.top10特征如下: List of Attributes Port number server Minimum segment size client→server First quartile of number of control bytes in each packet client→server Maximum n
How Transformers Work --- The Neural Network used by Open AI and DeepMind Original English Version link:https://towardsdatascience.com/transformers-141e32e69591 Chinese version by 量子位. 本文的主要内容:RNN, LSTM, Attention, CNN, Transformer, Self-Attention, M