根据前面几篇文章我们可以知道,当我们为模型泛化性能选择评估指标时,要根据问题本身以及数据集等因素来做选择.本篇博客主要是解释Micro Average,Macro Average,Weighted Average.这三者常用于多分类任务,他们的计算方法有细微的差别,因此在各自表示的含义和适用场景上也有细微的差别 Micro Average Micro Average会考虑到所有类别的贡献.举个例子, 假设我们有四个类A,B,C,D. 通过模型预测得到了预测值: 真实值:A, A, A, A, B