本章通过一个例子,介绍机器学习的整个流程. 2.1 使用真实数据集练手(Working with Real Data) 国外一些获取数据的网站: Popular open data repositories: UC Irvine Machine Learning Repository Kaggle datasets Amazon's AWS datasets Meta portals (they list open data repositories): http://dataportals.o
RNNs在股票价格预测的应用 前言 RNN和LSTMs在时态数据上表现特别好,这就是为什么他们在语音识别上是有效的.我们通过前25天的开高收低价格,去预测下一时刻的前收盘价.每个时间序列通过一个高斯分布和2层LSTM模型训练数据.文章分为两个版块,外汇价格预测和每日盘中价格预测(30分钟.15分钟.5分钟,等等).源代码请在文末获取! 外汇预测(用英语描述) a. Daily Data is pulled from Yahoo’s Data Reader b. Only the training
来源:https://blog.csdn.net/capecape/article/details/78623897 RMSE Root Mean Square Error, 均方根误差是观测值与真值偏差的平方和与观测次数 m 比值的平方根.是用来衡量观测值同真值之间的偏差MAE Mean Absolute Error ,平均绝对误差是绝对误差的平均值能更好地反映预测值误差的实际情况.标准差 Standard Deviation ,标准差是方差的算数平方根是用来衡量一组数自身的离散程度 RMSE