http://scikit-learn.org/stable/modules/classes.html#module-sklearn.decomposition Reference This is the class and function reference of scikit-learn. Please refer to the full user guide for further details, as the class and function raw specifications
流形学习 (manifold learning) zz from prfans............................... dodo:流形学习 (manifold learning) dodo 流形学习是个很广泛的概念.这里我主要谈的是自从2000年以后形成的流形学习概念和其主要代表方法.自从2000年以后,流形学习被认为属于非线性降维的一个分支.众所周知,引导这一领域迅速发展的是2000年Science杂志上的两篇文章: Isomap and LLE (Locally Lin
提起siamese network一般都会引用这两篇文章: <Learning a similarity metric discriminatively, with application to face verification>和< Hamming Distance Metric Learning>. 本文主要通过论文<Learning a Similarity Metric Discriminatively, with Application to Face Verif
catalogue . 引言 . Neural Networks Transform Space - 神经网络内部的空间结构 . Understand the data itself by visualizing high-dimensional input dataset - 输入样本内隐含的空间结构 . Example : Word Embeddings in NLP - text word文本词语串内隐含的空间结构 . Example : Paragraph Vectors in NLP
MNIST 可视化 Visualizing MNIST: An Exploration of Dimensionality Reduction At some fundamental level, no one understands machine learning. It isn't a matter of things being too complicated. Almost everything we do is fundamentally very simple. Unfortuna