首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
mapreduce介绍
2024-11-03
大数据技术 —— MapReduce 简介
本文为senlie原创,转载请保留此地址:http://www.cnblogs.com/senlie/ 1.概要很多计算在概念上很直观,但由于输入数据很大,为了能在合理的时间内完成,这些计算必须分布在数以百计数以千计的机器上.例如处理爬取得到的文档.网页请求日志来计算各种衍生数据,如倒排索引,网页文档的各种图结构表示,从每个主机上爬取的文档数,在某一天最频繁的查询的集合. MapReduce 是为处理和生成大数据集的编程模式和相应的实现.用户指定一个 map 函数来处理一个键值对来生成一个键值对
大数据开发 | MapReduce介绍
1. MapReduce 介绍 1.1MapReduce的作用 假设有一个计算文件中单词个数的需求,文件比较多也比较大,在单击运行的时候机器的内存受限,磁盘受限,运算能力受限,而一旦将单机版程序扩展到集群来分布式运行,将极大增加程序的复杂度和开发难度,因此这个工作可能完成不了.针对以上这个案例,MapReduce在这里能起到什么作用呢,引入MapReduce框架后,开发人员可以将绝大部分工作集中在业务逻辑的开发上,而将分布式计算中的复杂性交由框架来处理. 可见在程序由单机版扩成分布式时,会引入
hadoop学习第三天-MapReduce介绍&&WordCount示例&&倒排索引示例
一.MapReduce介绍 (最好以下面的两个示例来理解原理) 1. MapReduce的基本思想 Map-reduce的思想就是“分而治之” Map Mapper负责“分”,即把复杂的任务分解为若干个“简单的任务”执行 “ 简单的任务”有几个含义: 1 数据或计算规模相对于原任务要大大缩小: 2 就近计算,即会被分配到存放了所需数据的节点进行计算: 3 这些小任务可以并行计算,彼此间几乎没有依赖关系 一个HDFS block (input split)执行一个Map task. Map tas
云小课|MRS基础原理之MapReduce介绍
阅识风云是华为云信息大咖,擅长将复杂信息多元化呈现,其出品的一张图(云图说).深入浅出的博文(云小课)或短视频(云视厅)总有一款能让您快速上手华为云.更多精彩内容请单击此处. 摘要:MapReduce是Hadoop的核心,是Google提出的一个软件架构,用于大规模数据集(大于1TB)的并行运算.概念"Map(映射)"和"Reduce(化简)",及他们的主要思想,都是从函数式编程语言借来的,还有从矢量编程语言借来的特性. 本文分享自华为云社区<[云小课]EI第
MongoDB中的MapReduce介绍与使用
一.简介 在用MongoDB查询返回的数据量很大的情况下,做一些比较复杂的统计和聚合操作做花费的时间很长的时候,可以用MongoDB中的MapReduce进行实现 MapReduce是个非常灵活和强大的数据聚合工具.它的好处是可以把一个聚合任务分解为多个小的任务,分配到多服务器上并行处理.MongoDB也提供了MapReduce,当然查询语肯定是JavaScript. MongoDB中的MapReduce主要有以下几阶段: Map:把一个操作Map到集合中的每一个文档 Shuffle: 根据Ke
MongoDB中MapReduce介绍与使用
一.简介 在用MongoDB查询返回的数据量很大的情况下,做一些比较复杂的统计和聚合操作做花费的时间很长的时候,可以用MongoDB中的MapReduce进行实现 MapReduce是个非常灵活和强大的数据聚合工具.它的好处是可以把一个聚合任务分解为多个小的任务,分配到多服务器上并行处理.MongoDB也提供了MapReduce,当然查询语肯定是JavaScript. MongoDB中的MapReduce主要有以下几阶段: Map:把一个操作Map到集合中的每一个文档 Shuffle: 根据Ke
MapReduce介绍
一.MapReduce模型 1.MapReduce是大规模数据(TB级)计算的利器,Map和Reduce是它的主要思想,来源于函数式编程语言. 2.Map负责将数据打散,Reduce负责对数据进行聚集,用户只需要实现Map和Reduce两个接口,即可完成TB级数据的计算. 3.常见的应用包括:日志分析和数据挖掘等数据分析应用.另外,还可以用于科学数据计算,如圆周率PI的计算等. 4.当我们提交一个计算作业时,MapReduce会首先把计算作业拆分成若干个Map任务,然后分配到不同的节点上去执行,
2 weekend110的mapreduce介绍及wordcount + wordcount的编写和提交集群运行 + mr程序的本地运行模式
把我们的简单运算逻辑,很方便地扩展到海量数据的场景下,分布式运算. Map作一些,数据的局部处理和打散工作. Reduce作一些,数据的汇总工作. 这是之前的,weekend110的hdfs输入流之源码分析.现在,全部关闭断点. //4个泛型中,前两个是指定mapper输入数据的类型,KEYIN是输入的key类型,VALUE是输入的value的类型 //map 和 reduce的数据输入输出是以key-value对的形式封装的 //默认情况下,框架传递给我们的mapper的输入数据中,key是要
04 MapReduce原理介绍
大数据实战(上) # MapReduce原理介绍 大纲: * Mapreduce介绍 * MapReduce2运行原理 * shuffle及排序 定义 * Mapreduce 最早是由google公司研究提出的一种免息nag大规模数据处理的并行计算模型和方法.是hadoop面向大数据并行处理的计算模型.框架和平台 * Mapreduce是一个计算框架,既然是做计算的框架,那么表现形式就是有个输入(input),mapreduce操作这个输入(input),通过本身定义好的计算模型,得到一个
MongoDB 的 MapReduce 大数据统计统计挖掘
MongoDB虽然不像我们常用的mysql,sqlserver,oracle等关系型数据库有group by函数那样方便分组,但是MongoDB要实现分组也有3个办法: * Mongodb三种分组方式: * 1.group(先筛选再分组,不支持分片,对数据量有所限制,效率不高) * 2.mapreduce(基于js引擎,单线程执行,效率较低,适合用做后台统计等) * 3.aggregate(推荐) (如果你的PHP的mongodb驱动版本需>=1.3.0,推荐你使用aggregate,性能要高很
深入浅出Hadoop实战开发(HDFS实战图片、MapReduce、HBase实战微博、Hive应用)
Hadoop是什么,为什么要学习Hadoop? Hadoop是一个分布式系统基础架构,由Apache基金会开发.用户可以在不了解分布式底层细节的情况下,开发分布式程序.充分利用集群的威力高速运算和存储.Hadoop实现了一个分布式文件系统(Hadoop Distributed File System),简称HDFS.HDFS有着高容错性的特点,并且设计用来部署在低廉的(low-cost)硬件上.而且它提供高传输率(high throughput)来访问应用程序的数据,适合那些有着超大数据
四种方案:将OpenStack私有云部署到Hadoop MapReduce环境中
摘要:OpenStack与Hadoop被誉为继Linux之后最有可能获得巨大成功的开源项目.这二者如何结合成为更猛的新方案?业内给出两种答案:Hadoop跑在OpenStack上或OpenStack部署到Hadoop上.Steve Markey教授重点介绍了后者. 这两种答案都有企业在实践.“Hadoop跑在OpenStack上”可以参考<Project Savanna:让Hadoop运行在OpenStack之上>,“OpenStack部署到Hadoop上”则重点可查阅本文. 随着企业开始同时
MapReduce shuffle过程剖析及调优
MapReduce简介 在Hadoop MapReduce中,框架会确保reduce收到的输入数据是根据key排序过的.数据从Mapper输出到Reducer接收,是一个很复杂的过程,框架处理了所有问题,并提供了很多配置项及扩展点.一个MapReduce的大致数据流如下图: 更详细的MapReduce介绍参考Hadoop MapReduce原理与实例. Mapper的输出排序.然后传送到Reducer的过程,称为shuffle.本文详细地解析shuffle过程,深入理解这个过程对于MapRedu
一脸懵逼学习MapReduce的原理和编程(Map局部处理,Reduce汇总)和MapReduce几种运行方式
1:MapReduce的概述: (1):MapReduce是一种分布式计算模型,由Google提出,主要用于搜索领域,解决海量数据的计算问题. (2):MapReduce由两个阶段组成:Map和Reduce,用户只需要实现map()和reduce()两个函数,即可实现分布式计算,非常简单. (3):这两个函数的形参是key.value对,表示函数的输入信息. 2:MapReduce执行步骤: (1): map任务处理 (a):读取输入文件内容,解析成key.value对.对输入文件的每一行,解析
Hadoop记录-hadoop介绍
1.hadoop是什么? Hadoop 是Apache基金会下一个开源的大数据分布式计算平台,它以分布式文件系统HDFS和MapReduce算法为核心,为用户提供了系统底层细节透明的分布式基础架构. 2.hadoop主要组成部分 1)hdfs分布式存储文件系统---海量数据存储,大文件被分成默认64M一块的数据块分布存储在集群机器中 2)Yarn资源管理与作业调度 3)MapReduce算法---数据计算(并行计算框架) 3.hadoop特点 可靠.高效.可伸缩.容错.不适合低延迟数据访问.可处
Hadoop介绍-3.HDFS介绍和YARN原理介绍
一. HDFS介绍: Hadoop2介绍 HDFS概述 HDFS读写流程 1. Hadoop2介绍 Hadoop是Apache软件基金会旗下的一个分布式系统基础架构.Hadoop2的框架最核心的设计就是HDFS.MapReduce和YARN,为海量的数据提供了存储和计算. HDFS主要是Hadoop的存储,用于海量数据的存储: MapReduce主要运用于分布式计算: YARN是Hadoop2中的资源管理系统. Hadoop1和Hadoop2的结构对比: Hadoop2主要改进: YARN
python - hadoop,mapreduce demo
Hadoop,mapreduce 介绍 59888745@qq.com 大数据工程师是在Linux系统下搭建Hadoop生态系统(cloudera是最大的输出者类似于Linux的红帽), 把用户的交易或行为信息通过HDFS(分布式文件系统)等存储用户数据文件,然后通过Hbase(类似于NoSQL)等存储数据,再通过Mapreduce(并行计算框架)等计算数据,然后通过hiv或pig(数据分析平台)等分析数据,最后按照用户需要重现出数据. Hadoop是一个由Apache基金会所开发的开源分布式系
MongoDB的MapReduce用法及php示例代码
MongoDB虽然不像我们常用的mysql,sqlserver,oracle等关系型数据库有group by函数那样方便分组,但是MongoDB要实现分组也有3个办法: * Mongodb三种分组方式: * 1.group(先筛选再分组,不支持分片,对数据量有所限制,效率不高) http://php.net/manual/zh/mongocollection.group.php * 2.mapreduce(基于js引擎,单线程执行,效率较低,适合用做后台统计等) * 3.aggregate(
Hadoop MapReduce八大步骤以及Yarn工作原理详解
Hadoop是市面上使用最多的大数据分布式文件存储系统和分布式处理系统, 其中分为两大块分别是hdfs和MapReduce, hdfs是分布式文件存储系统, 借鉴了Google的GFS论文. MapReduce是分布式计算处理系统, 借鉴了Google的MapReduce论文.本文着重来梳理下新版也就是2.3后的Hadoop的MapReduce部分, 也就是Yarn框架, 以及MapReduce的八大步骤的详细工作. 一 新老MapReduce的介绍和对比1.1 老版的MapReduce介绍老版
PySpark SQL 相关知识介绍
title: PySpark SQL 相关知识介绍 summary: 关键词:大数据 Hadoop Hive Pig Kafka Spark PySpark SQL 集群管理器 PostgreSQL MongoDB Cassandra date: 2019-06-06 13:56 urlname: 2019060601 categories: 大数据 tags: PySpark 大数据 img: /medias/featureimages/9.jpg author: foochane toc:
hadoop之mapreduce详解(基础篇)
本篇文章主要从mapreduce运行作业的过程,shuffle,以及mapreduce作业失败的容错几个方面进行详解. 一.mapreduce作业运行过程 1.1.mapreduce介绍 MapReduce是一种编程模型,用于大规模数据集(大于1TB)的并行运算.概念"Map(映射)"和"Reduce(归约)",是它们的主要思想,都是从函数式编程语言里借来的,还有从矢量编程语言里借来的特性.它极大地方便了编程人员在不会分布式并行编程的情况下,将自己的程序运行在分布式
热门专题
高德api Polyline动画
DABT和IRQ返回指令的区别
ug 二次开发 FaceCollector
mac上的webstorm和vscode哪个更加好用
html 加载提示效果
XPATH 去除空格
vs 2019 64位汇编
linux yum正在尝试其他镜像
ogg目标端库初始化
shell中切换目录
微信小程序 数据放入全局
qt中枚举变量与int类型相互比较
grid list 对齐
java程序设计人物关系辐射图
sqlserver varbinary转换varchar
win10 nodejs运行bat
linux强制杀进程
ubuntu设置用户权限
picturebox绘制轮廓
linux 密码忘了 vm