一.画二维图 1.原始数据(x,y) import matplotlib.pyplot as plt import numpy as np #数据 X = np.array(list(i for i in range(6))) Y = np.array([10,30,20,50,100,120]) 2.先对横坐标x进行扩充数据量,采用linspace #插值 from scipy.interpolate import spline X_new = np.linspace(X.min(),X.ma
temp=z(101:2200,101:2200) 根据图像属性可得此为2300*2300的tif图像,由于需要将其划分为9宫格,所以begin点设置为101,end点设置为2200,temp转化为可均分的2100*2100矩阵 for i=1:9 switch i case {1,2,3} G{i}=temp(1:700,1+(i-1)*700:i*700); case {4,5,6} G{i}=temp(701:1400,1+(i-4)*700:(i-3)*700); case {7,8,9
import numpy as np from mpl_toolkits.mplot3d import Axes3D import matplotlib as mpl from scipy import interpolate import matplotlib.cm as cm import matplotlib.pyplot as plt def func(x, y): return (x + y) * np.exp(-5.0 * (x ** 2 + y ** 2)) x = np.lins
1.basic numpy.meshgrid 由一维数组到二维数组,用于生成网格数据 matplotlib python绘图库 2.code In [88]: from mpl_toolkits.mplot3d import Axes3D In [89]: from matplotlib import cm In [108]: from matplotlib.ticker import LinearLocator,FormatStrFormatter In [91]: import matplo