很多时候会出现把一个N*M的矩阵做pca(对M降维)之后却得到一个M*(M-1)矩阵这样的结果.之前都是数学推导得到这个结论,但是, 今天看到一个很形象的解释: Consider what PCA does. Put simply, PCA (as most typically run) creates a new coordinate system by (1) shifting the origin to the centroid of your data, (2) squeezes and
PCA需要先求数据的散布矩阵x*x',再求其特征向量,那么随便一个400*450的图像,就是180000维,矩阵就是180000*180000,matlab无法容纳,那么通常的PCA对图像的降维,比如求eigenface是怎么实现的?难道都是很小的图像?修改 举报添加评论 分享 • 邀请回答 0 吕祺,喜欢思考,爱美好的食物 修改话题经验 Suppose you store the images as column vectors of length NxN (the number of
PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维. 在Scikit中运用PCA很简单: import numpy as np from sklearn import decomposition from sklearn import datasets iris = datasets.load_iris() X = iris.data y = i
PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维. 在Scikit中运用PCA很简单: import numpy as np from sklearn import decomposition from sklearn import datasets iris = datasets.load_iris() X = iris.data y = i