准备总结几篇关于 Markov Chain Monte Carlo 的笔记. 本系列笔记主要译自A Gentle Introduction to Markov Chain Monte Carlo (MCMC) 文章下给出的链接. Monte Carlo Approximations Monte Carlo Approximation for Integration 理论部分 本文主要参考 Monte Carlo Approximations 蒙特卡洛方法是用来近似计算积分的,通过数值方法也可以计
论文链接: https://arxiv.org/pdf/1504.08083.pdf 代码下载: https://github.com/rbgirshick/fast-rcnn Abstract Compared to previous work, Fast R-CNN employs several innovations to improve training and testing speed while also increasing detection accuracy #相比于之前的
本文链接:https://blog.csdn.net/Dooonald/article/details/78545461算术均值 close all clear all f=imread('D:/testData/filtering.tif'); [w,h]=size(f);image= f(:,:);fsize1=3;fsize2=5;fsize3=9; fssize1=(fsize1-1)/2;fssize2=(fsize2-1)/2;fssize3=(fsize3-1)/2; figure
文章目录 Size s=size(A) [r,c]=size(A) [r,c,m]=size(A) size(A,n) 二进制和十进制转换 dec2bin mean 均值 mean(a,1) mean(a,2) max(min) 最大(小)值 C = max(A) C = max(A,B) C = max(A,[],dim) std 标准差 var 方差 std(A) S = std(A,w) S = std(A,w,dim) y = skewness(X,flag,dim) 偏度 k = ku
clear all; close all; clc img=imread('lena.bmp'); figure; imshow(uint8(img)); [m n]=size(img); img_max=0; img_min=256; img_avg=0; for i=1:1:m for j=1:1:n if img(i, j)<img_min img_min=img(i,j); end if img(i, j)>img_max img_max=img(i,j); end img_avg=i