# coding=utf-8 #共轭梯度算法求最小值 import numpy as np from scipy import optimize def f(x, *args): u, v = x a, b, c, d, e, f,g,h = args return a*u**g+ b*u*v + c*v**h + d*u + e*v + f def gradf(x, *args): u, v = x a, b, c, d, e, f,g,h = args gu = g*a*u + b*v +
import numpy as np import random def genData(numPoints,bias,variance): x = np.zeros(shape=(numPoints,2)) y = np.zeros(shape=(numPoints)) for i in range(0,numPoints): x[i][0]=1 x[i][1]=i y[i]=(i+bias)+random.uniform(0,1)%variance return x,y def gradie