感觉是机器翻译,好多地方不通顺,凑合看看 原文名称:Complex-YOLO: An Euler-Region-Proposal for Real-time 3D Object Detection on Point Clouds原文地址:http://www.sohu.com/a/285118205_715754代码位置:https://github.com/Mandylove1993/complex-yolo(值得复现一下) 摘要.基于激光雷达的三维目标检测是自动驾驶的必然选择,因为它直接关
转载请注明本文链接: https://www.cnblogs.com/Libo-Master/p/9759130.html PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space Paper reading:Frustum PointNets
PointRCNN: 点云的3D目标生成与检测 PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud 论文地址:https://arxiv.org/abs/1812.04244 代码地址:https://github.com/sshaoshuai/PointRCNN 摘要 本文提出了一种基于点云的三维目标检测方法.整个框架由两个阶段组成:第一阶段用于自下而上的3D方案生成,第二阶段用于在标准坐标系中细化方案
CVPR2020:点云弱监督三维语义分割的多路径区域挖掘 Multi-Path Region Mining for Weakly Supervised 3D Semantic Segmentation on Point Clouds 论文地址: https://openaccess.thecvf.com/content_CVPR_2020/papers/Wei_Multi-Path_Region_Mining_for_Weakly_Supervised_3D_Semantic_Segmentat
原文来自我的独立blog:http://www.yuanyong.org/blog/cv/lsh-itq-sklsh-compliment 这两天寻找idea,想来思去也没想到好点的方法,于是把前段时间下过来的一篇<Iterative Quantization: A Procrustean Approach to Learning Binary Codes>和代码拿出来又细读了一番,希望可以从中获得点启发. Iterative Quantization: A Procrustean Appro
转载请注明本文链接: https://www.cnblogs.com/Libo-Master/p/9759130.html PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space Paper reading:Frustum PointNets
目的 使用雷达点云提供的深度信息 如何实现 将雷达的三维点云投影到相机的二维图像上 kitti数据集简介 kitti的数据采集平台,配置有四个摄像机和一个激光雷达,四个摄像机中有两个灰度摄像机,两个彩色摄像机. 从图中可看出,关于相机坐标系(camera)的方向与雷达坐标系(velodyne)的方向规定: camera: x = right, y = down, z = forward velodyne: x = forward, y = left, z = up 那么velodyne所采