6.标签特征二元化 处理分类变量还有另一种方法,不需要通过OneHotEncoder,我们可以用LabelBinarizer. 这是一个阈值与分类变量组合的方法. In [1]: from sklearn import datasets as d iris = d.load_iris() target = iris.target How to do it... 导入LabelBinarizer()创建一个对象: In [2]: from sklearn.preprocessing import
机器学习问题可能包含成百上千的特征.特征数量过多,不仅使得训练很耗时,而且难以找到解决方案.这一问题被称为维数灾难(curse of dimensionality).为简化问题,加速训练,就需要降维了. 降维会丢失一些信息(比如将图片压缩成jpeg格式会降低质量),所以尽管会提速,但可能使模型稍微变差.因此首先要使用原始数据进行训练.如果速度实在太慢,再考虑降维. 8.1 维数灾难(The Curse of Dimensionality) 我们生活在三维空间,连四维空间都无法直观理解,更别说更高