sklearn逻辑回归 logistics回归名字虽然叫回归,但实际是用回归方法解决分类的问题,其形式简洁明了,训练的模型参数还有实际的解释意义,因此在机器学习中非常常见. 理论部分 设数据集有n个独立的特征x,与线性回归的思路一样,先得出一个回归多项式: \[y(x) = w_0+w_1x_1+w_2x_2+-+w_nx_n\] 但这个函数的值域是\([-\infty,+\infty]\),如果使用符号函数进行分类的话曲线又存在不连续的问题.这个时候,就要有请我们的sigmoid函数登场了,其