首先说说自相关和互相关的概念. 自相关 在统计学中的定义,自相关函数就是将一个有序的随机变量系列与其自身作比较.每个不存在相位差的系列,都与其都与其自身相似,即在此情况下,自相关函数值最大. 在信号分析当中通常将自相关函数称之为自协方差方程. 用来描述信息在不同时间的,信息函数值的相关性. 互相关 在统计学中,互相关有时用来表示两个随机矢量 X 和 Y 之间的协方差 cov(X, Y),以与矢量 X 的“协方差”概念相区分,矢量 X 的“协方差”是 X 的各标量成分之间的协方差矩阵.
基本线性代数 [R jb]=rref(A)将A化为行最简型矩阵.R为所得行最简型矩阵,jb是一个向量显示每行首非0元所在列号. inv(A)求方阵A的逆,注意结果可能出现错误.当结果中出现Inf和NaN时一定有错. pinv(A)求矩阵伪逆 A \ b 矩阵左除计算,返回Ax = b的一个特解.当矩阵A为方阵时 A b等价于 inv(a) * b:当A不是方阵时只能使用左除计算而不能使用inv(A). A / b 矩阵右除运算,当矩阵A为方阵时 A b等价于 inv(a) * b:当A不是方
FFT算法的完整DSP实现 傅里叶变换或者FFT的理论参考: [1] http://www.dspguide.com/ch12/2.htm The Scientist and Engineer's Guide to Digital Signal Processing, By Steven W. Smith, Ph.D. [2] http://blog.csdn.net/v_JULY_v/article/details/6196862,可当作[1]的中文参考 [3] 任意一本数字信号处理教材,
傅里叶变换或者FFT的理论参考: [1] http://www.dspguide.com/ch12/2.htm The Scientist and Engineer's Guide to Digital Signal Processing, By Steven W. Smith, Ph.D. [2] http://blog.csdn.net/v_JULY_v/article/details/6196862,可当作[1]的中文参考 [3] 任意一本数字信号处理教材,上面都有详细的推导DCT求解