交叉熵代价函数 machine learning算法中用得很多的交叉熵代价函数. 1.从方差代价函数说起 代价函数经常用方差代价函数(即采用均方误差MSE),比如对于一个神经元(单输入单输出,sigmoid函数),定义其代价函数为: 其中y是我们期望的输出,a为神经元的实际输出[ a=σ(z), where z=wx+b ]. 在训练神经网络过程中,我们通过梯度下降算法来更新w和b,因此需要计算代价函数对w和b的导数: 然后更新w.b: w <—— w - η* ∂C/∂w = w - η *
视频学习来源 https://www.bilibili.com/video/av40787141?from=search&seid=17003307842787199553 笔记 Mnist分类程序 import numpy as np from keras.datasets import mnist #将会从网络下载mnist数据集 from keras.utils import np_utils from keras.models import Sequential #序列模型 from k