首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
Matlab 斯皮尔曼等级相关
2024-09-02
Spearman Rank(斯皮尔曼等级)相关系数及MATLAB实现
转自:http://blog.csdn.net/wsywl/article/details/5859751 Spearman Rank(斯皮尔曼等级)相关系数 1.简介 在统计学中,斯皮尔曼等级相关系数以Charles Spearman命名,并经常用希腊字母ρ(rho)表示其值.斯皮尔曼等级相关系数用来估计两个变量X.Y之间的相关性,其中变量间的相关性可以使用单调函数来描述.如果两个变量取值的两个集合中均不存在相同的两个元素,那么,当其中一个变量可以表示为另一个变量的很好的单调函数时(即两个变量
斯皮尔曼等级相关(Spearman’s correlation coefficient for ranked data)
sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share pearsonr皮尔森共线系数要求: 1.每个变量数据集符合正态分布 2. p值代表极端值出现概率,样本量小时p值不可靠,但样本量大于500时,p值具有
Spearman(斯皮尔曼) 等级相关
Spearman相关系数又称秩相关系数,是利用两变量的秩次大小作线性相关分析,对原始变量的分布不作要求,属于非参数统计方法,适用范围要广些.对于服从Pearson相关系数的数据亦可计算Spearman相关系数,但统计效能要低一些.Pearson相关系数的计算公式可以完全套用Spearman相关系数计算公式,但公式中的x和y用相应的秩次代替即可. 斯皮尔曼等级相关是根据等级资料研究两个变量间相关关系的方法.它是依据两列成对等级的各对等级数之差来进行计算的,所以又称为“等级差数法”. 斯皮尔曼等级相
Spearman Rank(斯皮尔曼等级)相关系数
转自:http://blog.csdn.net/wsywl/article/details/5859751 1.简介 在统计学中,斯皮尔曼等级相关系数以Charles Spearman命名,并经常用希腊字母ρ(rho)表示其值.斯皮尔曼等级相关系数用来估计两个变量X.Y之间的相关性,其中变量间的相关性可以使用单调函数来描述.如果两个变量取值的两个集合中均不存在相同的两个元素,那么,当其中一个变量可以表示为另一个变量的很好的单调函数时(即两个变量的变化趋势相同),两个变量之间的ρ可以达到+1或-1
【Matlab开发】matlab中bar绘图设置与各种距离度量
[Matlab开发]matlab中bar绘图设置与各种距离度量 标签(空格分隔): [Matlab开发] [机器学习] 声明:引用请注明出处http://blog.csdn.net/lg1259156776/ Matlab Bar图如何为每个bar设置不同颜色 data = [3, 7, 5, 2;4, 3, 2, 9;6, 6, 1, 4]; b = bar(data); 使用bar绘制非常直观简单,但有时需要突出显示某一个bar,比如该bar是一个标杆,用来衡量其bar的高度,所以可以用醒目
学习笔记78—三大统计相关系数:Pearson、Spearman秩相关系数、kendall等级相关系数
****************************************************** 如有谬误,请联系指正.转载请注明出处. 联系方式: e-mail: heyi9069@gmail.com QQ: 3309198330 ****************************************************** 统计相关系数简介 由于使用的统计相关系数比较频繁,所以这里就利用几篇文章简单介绍一下这些系数. 相关系数:考察两个事物(在数据里我们称之为变量)
三大统计相关系数:Pearson、Spearman秩相关系数、kendall等级相关系数
统计相关系数简介 由于使用的统计相关系数比较频繁,所以这里就利用几篇文章简单介绍一下这些系数. 相关系数:考察两个事物(在数据里我们称之为变量)之间的相关程度. 如果有两个变量:X.Y,最终计算出的相关系数的含义可以有如下理解: (1).当相关系数为0时,X和Y两变量无关系. (2).当X的值增大(减小),Y值增大(减小),两个变量为正相关,相关系数在0.00与1.00之间. (3).当X的值增大(减小),Y值减小(增大),两个变量为负相关,相关系数在-1.00与0.00之间. 相关系数的绝对值
一元回归1_基础(python代码实现)
python机器学习-乳腺癌细胞挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share 机器学习,项目统计联系QQ:231469242 目录 1.基本概念 2.SSE/SSR/SST可视化 3.简单回归分为两类 4.一元回归公式 5.估计的
Mahout推荐算法基础
转载自(http://www.geek521.com/?p=1423) Mahout推荐算法分为以下几大类 GenericUserBasedRecommender 算法: 1.基于用户的相似度 2.相近的用户定义与数量 特点: 1.易于理解 2.用户数较少时计算速度快 GenericItemBasedRecommender 算法: 1.基于item的相似度 特点: 1.item较少时就算速度更快 2.当item的外部概念易于理解和获得是非常有用 SlopeOneRecommender(itemB
ITU-R BT.1788建议书 对多媒体应用中视频质量的主观评估方法
ITU-R BT.1788建议书 对多媒体应用中视频质量的主观评估方法 (ITU‑R 102/6号研究课题) (2007年) 范围 数字广播系统允许提供多媒体和数据广播应用,包括视频.音频.静态图像.文本和图表.本建议书规定评估多媒体应用视频质量的非交互式主观评估方法. 国际电联无线电通信全会, 考虑到 a) 许多国家正在引入数字广播系统: b) 利用数字广播系统,已经引入或计划引入包括视频.音频.静态图像.文本.图表等的多媒体和数据广播服务: c) 多
一元回归_ols参数解读(推荐AAA)
sklearn实战-乳腺癌细胞数据挖掘(博客主亲自录制视频教程) https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share 多重共线性测试需要改进 文件夹需要两个包 python3.0 anaconda normality_check.py 正太检验 # -*- cod
一元回归_R相关系数_多重检验
sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share 文件夹需要两个包 normality_check.py # -*- coding: utf-8 -*- ''' Author:Toby QQ:2314
图像质量评价-NQM和WPSNR
王保全. 基于混合专家模型的快速图像超分辨率方法研究与实现[D]. 2015. PSNR 和SSIM 在有时候并不能很确切的表示图像质量 标准,该论文中根据一定量的人为的感知评分作为参考,用斯皮尔曼等级相关 系数来验证各个图像质量评价指标的有效性,目标是找到更符合人眼观察的图 像质量评价标准.除了 PSNR 和 SSIM ,该论文还对比了其他几个图像质量评价标准: 信息保真度(Information Fidelity Criterion ,IFC)[43] . 多尺度结构相似度 (Multi-s
r_action
皮尔逊相关系数 斯皮尔曼等级相关(Spearman Rank Correlation) http://wiki.mbalib.com/wiki/斯皮尔曼等级相关 从表中的数字可以看出,工人的考试成绩愈高其产量也愈高,二者之间的联系程度是很一致的,但是相关系数r=0.676 并不算太高,这是由于它们之间的关系并不是线性的,如果分别按考试成绩和产量高低变换成等级(见上表第3.4列),则可以计算它们之间的等级相关系数为1. Kendall tau rank correlation coefficien
brdd 惰性执行 mapreduce 提取指定类型值 WebUi 作业信息 全局临时视图 pyspark scala spark 安装
[rdd 惰性执行] 为了提高计算效率 spark 采用了哪些机制 1-rdd 基于分布式内存数据集进行运算 2-lazy evaluation :惰性执行,即rdd的变换操作并不是在运行该代码时立即执行,而仅记录下转换操作的对象:只有当运行到一个行动代码时,变换操作的计算逻辑才真正执行. http://spark.apache.org/docs/latest/rdd-programming-guide.html#resilient-distributed-datasets-rdds [ rd
matlab 相关性分析
Pearson相关系数 考察两个事物(在数据里我们称之为变量)之间的相关程度,简单来说就是衡量两个数据集合是否在一条线上面.其计算公式为: 或或 N表示变量取值的个数. 相关系数r的值介于–1与+1之间,即–1≤r≤+1.其性质如下: 当r>0时,表示两变量(当X的值增大(减小),Y值增大(减小))正相关,r<0时,两变量为负相关(当X的值增大(减小),Y值减小(增大)). 当|r|=1时,表示两变量为完全线性相关,即为函数关系. 当r=0时,表示两变量间无线性相关关系. 当0<|r|&
数据质量、特征分析及一些MATLAB函数
MATLAB数据分析工具箱 MATLAB工具箱主要含有的类别有: 数学类.统计与优化类.信号处理与通信类.控制系统设计与分析类.图像处理类.测试与测量类.计算金融类.计算生物类.并行计算类.数据库访问与报告类. MATLAB 代码生成类. MATLAB 应用发布类. 每个类别内含有一个或多个工具箱. 比如数学.统计与优化类别就包含有曲线拟合工具箱.优化工具箱.神经网络工具箱.统计工具箱等. MATLAB 应用发布类别主要包含MATLAB和其他语言的混合编译.编程,包括C.C#.Java等. MA
Matlab 绘制三维立体图(以地质异常体为例)
前言:在地球物理勘探,流体空间分布等多种场景中,定位空间点P(x,y,x)的物理属性值Q,并绘制三维空间分布图,对我们洞察空间场景有十分重要的意义. 1. 三维立体图的基本要件: 全空间网格化 网格节点的物理属性值 2.数据准备 数据不易贴,我放在了百度网盘:点击下载数据 大概如下形式: TIP: 这里的数据矩阵为v(5276),可以看成一本27页纸,每页绘制了5*6的网格,然后27页纸叠在一起.当你理解本图绘制后,数据可以随意制作. 3.主要函数:slice.isosurface.patch
Matlab slice方法和包络法绘制三维立体图
前言:在地球物理勘探,流体空间分布等多种场景中,定位空间点P(x,y,x)的物理属性值Q,并绘制三维空间分布图,对我们洞察空间场景有十分重要的意义. 1. 三维立体图的基本要件: 全空间网格化 网格节点的物理属性值 2.数据准备 数据不易贴,我放在了百度网盘:点击下载数据 大概如下形式: TIP: 这里的数据矩阵为v(5276),可以看成一本27页纸,每页绘制了5*6的网格,然后27页纸叠在一起.当你理解本图绘制后,数据可以随意制作. 3.主要函数:slice.isosurface.patch
Matlab 高斯_拉普拉斯滤波器处理医学图像
前言:本程序是我去年实现论文算法时所做.主要功能为标记切割肝脏区域.时间有点久,很多细节已经模糊加上代码做了很多注释,因此在博客中不再详述. NOTE: 程序分几大段功能模块,仔细阅读,对解决医学图像还是有一定的借鉴意义 想借鉴本文的一定要仔细阅读代码和注释,中间有人机交互部分,空跑会抛异常 .dcm数据,我放到了我的百度云盘,有兴趣的可以下载,实测一下代码.dcm数据连接 clc,clear img_1=dicomread('10011.dcm');%读取dcm文件 (所谓的灰度值) meta
热门专题
elasticsearch 求平均值,桶聚合
winform ListBox 滚轮事件
多分类支持向量机matlab
windowserver 2008 chrome版本
phpoffice 使用
oracle数据库sys用户密码
ubuntu ping 未知的名称或服务
iisreset stop 停止之后报告
slot formater性能
linux 执行命令说找不到databases
JS获取摄像头帧数据
安装analyzer缺少wk
layui 上传文件时怎么显示进度
SaltStack 服务器更新
python调用微信登录
redis9节点集群允许挂掉多少
vue获取document高度
linux 命令行参数 最长
用c 写个抽象类图形类求圆形面积
MATLAB在GUI上实现序列的基本运算