Description Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak. Input The input contains exactly one test case. The first line of input contains three positive integers n (n ≤ 30), k (k ≤ 109) and m (m < 104). Then
Number Sequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 147964 Accepted Submission(s): 35964 Problem Description A number sequence is defined as follows: f(1) = 1, f(2) = 1, f(n) = (A
MATLAB中求矩阵非零元的坐标: 方法1: index=find(a); [i,j]=ind2sub(size(a),index); disp([i,j]) 方法2: [i,j]=find(a>0|a<0) %列出所有非零元的坐标 [i,j]=find(a==k) %找出等于k值的矩阵元素的坐标 所用函数简介: IND2SUB Multiple subscripts from linear index. IND2SUB is used to determine the equivalent
http://poj.org/problem?id=3735 大致题意: 有n仅仅猫,開始时每仅仅猫有花生0颗,现有一组操作,由以下三个中的k个操作组成: 1. g i 给i仅仅猫一颗花生米 2. e i 让第i仅仅猫吃掉它拥有的全部花生米 3. s i j 将猫i与猫j的拥有的花生米交换 现将上述一组操作循环m次后,问每仅仅猫有多少颗花生? 非常明显,要先构造矩阵.构造一个(n+1)*(n+1)的矩阵a,初始化为单位矩阵. g i : a[i][n+1] += 1; e i : a[i][j]
Another kind of Fibonacci Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 1219 Accepted Submission(s): 466 Problem Description As we all known , the Fibonacci series : F(0) = 1, F(1) = 1, F(N
任意门:http://acm.hdu.edu.cn/showproblem.php?pid=1757 A Simple Math Problem Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 6621 Accepted Submission(s): 4071 Problem Description Lele now is thin
A Simple Math Problem 一个矩阵快速幂水题,关键在于如何构造矩阵.做过一些很裸的矩阵快速幂,比如斐波那契的变形,这个题就类似那种构造.比赛的时候手残把矩阵相乘的一个j写成了i,调试了好久才发现.改过来1A. 贴个AC的代码: const int N=1e5+10; ll k,m,s[10]; struct mat { ll a[10][10]; }; mat mat_mul(mat A,mat B) { mat res; memset(res.a,0,sizeof(res.a
思路: ax+b cx+d 构造矩阵+矩阵快速幂 (需要加各种特判,,,,我好像加少了- ) //By SiriusRen #include <cstdio> #include <cstring> #include <algorithm> using namespace std; #define int long long const int mod=1000000007; int n,m,a,b,c,d;char N[1000500],M[1000500]; stru
HDU 5667 构造矩阵快速幂 题目描述 解析 我们根据递推公式 设 则可得到Q的指数关系式 求Q构造矩阵 同时有公式 其中φ为欧拉函数,且当p为质数时有 代码 #include <cstdio> using namespace std; long long pow_mod(long long a, long long p, long long mod) { if (p == 0) return 1; long long ans = pow_mod(a, p / 2, mod); ans =